1,240 research outputs found

    Combined voltage oriented control and direct power control based on backstepping control for four-leg PWM rectifier under unbalanced conditions

    Get PDF
    The present paper proposes a combined voltage-oriented control and direct power control (VOC-DPC) method associated with the backstepping control technique for a three-phase four-wire grid-connected four-leg rectifier in the synchronous rotating frame without using phase locked loop (PLL) and Parks transformation under balanced and unbalanced load and grid conditions. This control method is proposed in order to remove the drawbacks of the conventional VOC based on the PLL technique .The proposed control method is able to enhance the control performance and dynamic responses of the system when considering slow dynamics and instability issues of the PLL in several cases and can decrease the computational burden due to the absence of PLL and Park transformation. In addition, the performance of the proposed VOC-DPC method is enhanced by using backstepping control (BSC) based on Lyabonov theory for both the input currents and DC-bus voltage loops. As a consequence, constant DC-bus voltage, unit power factor, sinusoidal input currents, and neutral current minimization can be accurately carried out under both DC-bus voltage and load variations. Furthermore, robustness against filter inductance variations can also be achieved. The effectiveness, superiority, and performance of the proposed control method for a four-leg rectifier based on BSC in the dq0-frame are validated by several processor-in-the-loop (PIL) co-simulation tests sing the STM32F407 discovery development board

    Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Generator Systems

    Get PDF
    Wind energy plays an increasingly important role in the world because it is friendly to the environment. During the last decades, the concept of a variable-speed wind turbine (WT) has been receiving increasing attention due to the fact that it is more controllable and efficient, and has good power quality. As the demand of controllability of variable speed WTs increases, it is therefore important and necessary to investigate the modeling for wind turbine-generator systems (WTGS) that are capable of accurately simulating the behavior of each component in the WTGS. Therefore, this thesis will provide detailed models of a grid-connected wind turbine system equipped with a doubly-fed induction generator (DFIG), which includes the aerodynamic models of the wind turbine, the models of the mechanical transmission system, the DFIG models and the three-phase two-level PWM voltage source converter models. In order to obtain satisfying output power from the WTGS, control strategies are also necessary to be developed based on the previously obtained WTGS models. These control schemes include the grid-side converter control, the generator-side converter control, the maximum power point tracking control and the pitch angle control. The grid-side converter controller is used to keep the DC-link voltage constant and yield a unity power factor looking into the WTGS from the grid-side. The generator-side converter controller has the ability of regulating the torque, active power and reactive power. The maximum power point tracking control is used to provide the reference values for the active power at the stator terminals. The pitch angle control scheme is used to regulate the pitch angle and thus keep the output power at rated value even when the wind speed experiences gusts. Various studies in the literature have reported that two-level converters have several disadvantages compared with three-level converters. Among the disadvantages are high switching losses, high dv/dt, and high total harmonic distortion (THD). Hence, the models and field oriented control schemes for three-level neutral-point-clamped (NPC) converters are also investigated and applied to a WTGS. Besides, an advanced modulation technology, namely, space vector PWM (SVPWM), is also investigated and compared to traditional sinusoidal PWM in a WTGS

    High performance of sensorless sliding mode control of doubly fed induction motor associated with two multilevel inverters fed by VFDPC_SVM rectifier

    Get PDF
    A robust sensorless control based on the sliding-mode observer applied to a doubly fed induction motor associated with two three-level NPC-type voltage inverters fed by PWM rectifier with constant switching frequency and without line voltage sensors, is presented in this paper.  Also, we present an improved direct power control with virtual flux (VFDPC_SVM) for the control of three phase rectifier. Simulation results of this proposed system were analyzed using MATLAB environment

    SENSORLESS DIRECT POWER CONTROL FOR THREE-PHASE GRID SIDE CONVERTER INTEGRATED INTO WIND TURBINE SYSTEM UNDER DISTURBED GRID VOLTAGES

    Get PDF
    Wind turbines with permanent magnet synchronous generator (PMSG) are widely used as sources of energy connected to a grid. The studied system is composed of a wind turbine based on PMSG, a bridge rectifier, a boost converter, and a controlled inverter to eliminate low-order harmonics in grid currents under disturbances of grid voltage. Traditionally, the grid side converter is controlled by using the control VFOC (Virtual Flux Oriented Control), which decouple the three-phase currents indirect components (id) and in quadratic (iq) and regulate them separately. However, the VFOC approach is dependent on the parameters of the system. This paper illustrates a new scheme for the grid-connected converter controller. Voltage imbalance and harmonic contents in the three-phase voltage system cause current distortions. Hence, the synchronization with the network is an important feature of controlling the voltage converter. Thus, a robust control method is necessary to maintain the adequate injection of the power during faults and/or a highly distorted grid voltage. The proposed new control strategy is to use the direct power control based virtual flux to eliminate side effects induced by mains disturbances. This control technique lowers remarkably the fluctuations of the active and reactive power and the harmonic distortion rate. The estimated powers used in the proposed control approach is calculated directly by the positive, negative, and harmonic items of the estimated flux and the measured current without line sensor voltage.Ветряные турбины с синхронным генератором на постоянных магнитах (PMSG) широко используются в качестве источников энергии, подключенных к сети. Исследуемая система состоит из ветряной турбины на основе PMSG, мостового выпрямителя, повышающего преобразователя и управляемого инвертора для устранения гармоник низкого порядка в токах сетки при возмущениях напряжения сети. Традиционно преобразователь на стороне сети управляется с помощью виртуального потокоориентированного управления VFOC (Virtual Flux Oriented Control), который разделяет трехфазные токи на косвенные компоненты (id) и на квадратичные компоннеты (iq) и регулирует их отдельно. Однако подход VFOC зависит от параметров системы. Данная статья иллюстрирует новую схему для контроллера преобразователя, подключенного к сети. Дисбаланс напряжения и содержание гармоник в трехфазной системе напряжения вызывают искажения тока. Следовательно, синхронизация с сетью является важной особенностью управления преобразователем напряжения. Таким образом, надежный метод управления необходим для поддержания адекватной подачи энергии во время неисправностей и/или значительно искаженного напряжения сети. Предложенная новая стратегия управления заключается в использовании виртуального потока на основе прямого управления мощностью для устранения побочных эффектов, вызванных помехами в сети. Этот метод управления значительно снижает колебания активной и реактивной мощности и уровень гармонических искажений. Оценочные мощности, используемые в предлагаемом подходе к управлению, рассчитываются непосредственно по положительным, отрицательным и гармоническим элементам оцененного потока и измеренного тока без напряжения линейного датчика

    Sliding mode approach for control and observation of a three phase AC-DC pulse-width modulation rectifier

    Get PDF
    Introduction. For AC-DC conversion systems, the electrical systems typically use thyristor or diode bridge rectifiers, which have relatively poor performance. Nowadays, three-phase pulse-width modulation rectifiers are widely applied in various applications for their well-known intrinsic benefits, such as adjustable DC link voltage, unity power factor, bidirectional power flow and very low total harmonic distortion. Purpose. The objective of this work is to achieve better stability and dynamic performance using sliding mode strategy for control and observation. Methods. For that purpose, first a sliding mode controller is introduced on the DC-link side to ensure a fast and accurate response of the output load voltage. Then, the sliding mode approach is employed to control the quadrature and direct components of power to maintain the input power factor at unity. Finally, this approach is used to design two observers for grid voltage estimation and online variation of load resistance. To overcome the problem associated with the use of the classical low-pass filter, an adaptive compensation algorithm is used to compensate the attenuation of the amplitude and phase delay of the observed grid voltages. This algorithm is based on the use of the two low-pass filters in cascade and ensures the minimization of chattering. Results. Comparative studies have been carried out between sliding mode control method for controlling the three-phase AC-DC pulse-width modulation rectifier and other conventional techniques. The validation by simulation and the tests carried out gave very satisfactory results and proved the effectiveness and feasibility of the sliding mode for both control and observation of three phase pulse-width modulation rectifier.Вступ. Для AC-DC систем перетворення електричні системи зазвичай використовують тиристорні або діодні мостові випрямлячі, які мають відносно погані характеристики. В даний час трифазні випрямлячі з широтно-імпульсною модуляцією широко застосовуються з різними цілями завдяки їх добре відомим внутрішнім перевагам, таким як регульована напруга у ланці постійного струму, одиничний коефіцієнт потужності, двонаправлений потік потужності та дуже низькі загальні гармонічні спотворення. Метою даної роботи є досягнення кращої стабільності та динамічних характеристик з використанням стратегії ковзного режиму для контролю та спостереження. Методи. З цією метою спочатку на стороні ланки постійного струму вводиться регулятор режиму ковзання, щоб забезпечити швидку і точну реакцію на вихідну напругу навантаження. Потім використовується метод ковзного режиму для управління квадратурною та прямою складовими потужності, щоб підтримувати вхідний коефіцієнт потужності рівним одиниці. Нарешті цей підхід використовується для розробки двох спостерігачів для оцінки напруги мережі та зміни опору навантаження в режимі онлайн. Для подолання проблеми, пов'язаної з використанням класичного низькочастотного фільтру, використовується алгоритм адаптивної компенсації, що компенсує загасання амплітуди і фазової затримки напруг мережі, що спостерігаються. Цей алгоритм заснований на використанні двох низькочастотних фільтрів у каскаді та забезпечує мінімізацію брязкоту. Результати. Були проведені порівняльні дослідження між методом керування ковзним режимом для керування трифазним випрямлячем AC-DC з широтно-імпульсною модуляцією та іншими традиційними методами. Перевірка за допомогою моделювання та проведені випробування дали дуже задовільні результати та довели ефективність та здійсненність ковзного режиму як для управління, так і для спостереження за трифазним випрямлячем з широтно-імпульсною модуляцією

    A Comparative Study between DPC and DPC-SVM Controllers Using dSPACE (DS1104)

    Get PDF
    The aim of this paper is to compare two different control structures. The Simple Direct Power Control (DPC) and the Direct Power Control with Space Vector Modulation (DPC- SVM) for two level converter applications. The first strategy (DPC) has been developed to control the instantaneous active and reactive power directly by selecting the optimum switching state of the converter. Applied to the Pulse Width Modulation (PWM) converter its main feature is to improve the total power factor and efficiency, even harmonics components existence. In the second structure, the active and reactive powers are used as (PWM) control vari- ables instead of the three-phase line currents usually used in other techniques. It is shown that DPC-SVM exhibits several properties; good dynamic response, constant switching fre- quency, and in particular it provides a sinusoidal line currents. Simulation and experimental results has shown that both control structures achieve good performances.DOI:http://dx.doi.org/10.11591/ijece.v4i3.607

    A Review on Direct Power Control of Pulsewidth Modulation Converters

    Get PDF

    Analysis of direct power control AC-DC converter under unbalance voltage supply for steady-state and dynamic response

    Get PDF
    This paper presents an analysis of Direct Power Control (DPC) technique for the Three-Phase Pulse Width Modulation (PWM) AC-DC converter under unbalanced supply condition. Unbalance condition will cause the presence of unbalanced current and voltages thus produce the negative components on the grid voltage as well as severe performance degradation of a grid connected Voltage Source Inverter (VSI). The input structures for conventional DPC has been modified with a three simpler sequence networks instead of coupled by a detailed Three-Phase system method. The imbalance voltage can be resolved by separating from the individual elements of voltage and current into symmetrical components called Sequence Network. Consequently, the input power relatively improved during unbalanced condition almost 70% through the measurement of Total Harmonic Distortion (THD) from the conventional Direct Power Control (DPC) in individual elements which is higher compared to separate components. Hence, several analyses are performed in order to analyze the steady state and dynamic performance of the converter, particularly during the load and DC voltage output reference variations

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio
    corecore