273 research outputs found

    Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control,coexistence, mesh networking, cyber-physical systems, WSN, M2M

    Get PDF
    International audienceThe proliferation of embedded systems, wireless technologies, and Internet protocols have enabled the Internet of Things (IoT) to bridge the gap between the virtual and physical world through enabling the monitoring and actuation of the physical world controlled by data processing systems. Wireless technologies, despite their offered convenience, flexibility, low cost, and mobility pose unique challenges such as fading, interference, energy, and security, which must be carefully addressed when using resource-constrained IoT devices. To this end, the efforts of the research community have led to the standardization of several wireless technologies for various types of application domains depending on factors such as reliability, latency, scalability, and energy efficiency. In this paper, we first overview these standard wireless technologies, and we specifically study the MAC and physical layer technologies proposed to address the requirements and challenges of wireless communications. Furthermore, we explain the use of these standards in various application domains, such as smart homes, smart healthcare, industrial automation, and smart cities, and discuss their suitability in satisfying the requirements of these applications. In addition to proposing guidelines to weigh the pros and cons of each standard for an application at hand, we also examine what new strategies can be exploited to overcome existing challenges and support emerging IoT applications

    Wireless remote patient monitoring on general hospital wards.

    Get PDF
    A novel approach which has potential to improve quality of patient care on general hospital wards is proposed. Patient care is a labour-intensive task that requires high input of human resources. A Remote Patient Monitoring (RPM) system is proposed which can go some way towards improving patient monitoring on general hospital wards. In this system vital signs are gathered from patients and sent to a control unit for centralized monitoring. The RPM system can complement the role of nurses in monitoring patients’ vital signs. They will be able to focus on holistic needs of patients thereby providing better personal care. Wireless network technologies, ZigBee and Wi-Fi, are utilized for transmission of vital signs in the proposed RPM system. They provide flexibility and mobility to patients. A prototype system for RPM is designed and simulated. The results illustrated the capability, suitability and limitation of the chosen technology

    Wireless sensor network for health monitoring

    Get PDF
    Wireless Sensor Network (WSN) is becoming a significant enabling technology for a wide variety of applications. Recent advances in WSN have facilitated the realization of pervasive health monitoring for both homecare and hospital environments. Current technological advances in sensors, power-efficient integrated circuits, and wireless communication have allowed the development of miniature, lightweight, low-cost, and smart physiological sensor nodes. These nodes are capable of sensing, processing, and communicating one or more vital signs. Furthermore, they can be used in wireless personal area networks (WPANs) or wireless body sensor networks (WBSNs) for health monitoring. Many studies were performed and/or are under way in order to develop flexible, reliable, secure, real-time, and power-efficient WBSNs suitable for healthcare applications. To efficiently control and monitor a patient’s status as well as to reduce the cost of power and maintenance, IEEE 802.15.4/ZigBee, a communication standard for low-power wireless communication, is developed as a new efficient technology in health monitoring systems. The main contribution of this dissertation is to provide a modeling, analysis, and design framework for WSN health monitoring systems. This dissertation describes the applications of wireless sensor networks in the healthcare area and discusses the related issues and challenges. The main goal of this study is to evaluate the acceptance of the current wireless standard for enabling WSNs for healthcare monitoring in real environment. Its focus is on IEEE 802.15.4/ZigBee protocols combined with hardware and software platforms. Especially, it focuses on Carrier Sense Multiple Access with Collision Avoidance mechanism (CSMA/CA) algorithms for reliable communication in multiple accessing networks. The performance analysis metrics are established through measured data and mathematical analysis. This dissertation evaluates the network performance of the IEEE 802.15.4 unslotted CSMA/CA mechanism for different parameter settings through analytical modeling and simulation. For this protocol, a Markov chain model is used to derive the analytical expression of normalized packet transmission, reliability, channel access delay, and energy consumption. This model is used to describe the stochastic behavior of random access and deterministic behavior of IEEE 802.15.4 CSMA/CA. By using it, the different aspects of health monitoring can be analyzed. The sound transmission of heart beat with other smaller data packet transmission is studied. The obtained theoretical analysis and simulation results can be used to estimate and design the high performance health monitoring systems

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Energy-aware medium access control protocols for wireless sensors network applications

    Get PDF
    The main purpose of this thesis was to investigate energy efficient Medium Access Control (MAC) protocols designed to extend the lifetime of a wireless sensor network application, such as tracking, environment monitoring, home security, patient monitoring, e.g., foetal monitoring in the last weeks of pregnancy. From the perspective of communication protocols, energy efficiency is one of the most important issues, and can be addressed at each layer of the protocol stack; however, our research only focuses on the medium access control (MAC) layer. An energy efficient MAC protocol was designed based on modifications and optimisations for a synchronized power saving Sensor MAC (SMAC) protocol, which has three important components: periodic listen and sleep, collision and overhearing avoidance and message passing. The Sensor Block Acknowledgement (SBACK) MAC protocol is proposed, which combines contention-based, scheduling-based and block acknowledgement-based schemes to achieve energy efficiency. In SBACK, the use of ACK control packets is reduced since it will not have an ACK packet for every DATA packet sent; instead, one special packet called Block ACK Response will be used at the end of the transmission of all data packets. This packet informs the sender of how many packets were received by the receiver, reducing the number of ACK control packets we intended to reduce the power consumption for the nodes. Hence more useful data packets can be transmitted. A comparison study between SBACK and SMAC protocol is also performed. Considering 0% of packet losses, SBACK decreases the energy consumption when directly compared with S-MAC, we will have always a decrease of energy consumption. Three different transceivers will be used and considering a packet loss of 10% we will have a decrease of energy consumption between 10% and 0.1% depending on the transceiver. When there are no retransmissions of packets, SBACK only achieve worst performance when the number of fragments is less than 12, after that the decrease of average delay increases with the increase of the fragments sent. When 10% of the packets need retransmission only for the TR1000 transceiver worst results occurs in terms of energy waste, all other transceivers (CC2420 and AT86RF230) achieve better results. In terms of delay if we need to retransmit more than 10 packets the SBACK protocol always achieves better performance when comparing with the other MAC protocols that uses ACK

    Secure Intra-Body Wireless Communications (SIWiC) System Project

    Get PDF
    SIWiC System is a project to investigate, design and implement future wireless networks of implantable sensors in the body. This futuristic project is designed to make use of the emerging and yet-to-emerge technologies, including ultra-wide band (UWB) for wireless communications, smart implantable sensors, ultra low power networking protocols, security and privacy for bandwidth and power deficient devices and quantum computing. Progress in each of these fronts is hindered by the needs of breakthrough. But, as we will see in this paper, these major challenges are being met or will be met in near future. SIWiC system is a network of in-situ wireless devices that are implanted to coordinate sensed data inside the body, such as symptoms monitoring collected internally, or biometric data collected of an outside object from within the intra-body network. One node has the capability of communicating outside the body to send data or alarm to a relevant authority, e.g., a remote physician

    Improved Wireless Security through Physical Layer Protocol Manipulation and Radio Frequency Fingerprinting

    Get PDF
    Wireless networks are particularly vulnerable to spoofing and route poisoning attacks due to the contested transmission medium. Traditional bit-layer defenses including encryption keys and MAC address control lists are vulnerable to extraction and identity spoofing, respectively. This dissertation explores three novel strategies to leverage the wireless physical layer to improve security in low-rate wireless personal area networks. The first, physical layer protocol manipulation, identifies true transceiver design within remote devices through analysis of replies in response to packets transmitted with modified physical layer headers. Results herein demonstrate a methodology that correctly differentiates among six IEEE 802.15.4 transceiver classes with greater than 99% accuracy, regardless of claimed bit-layer identity. The second strategy, radio frequency fingerprinting, accurately identifies the true source of every wireless transmission in a network, even among devices of the same design and manufacturer. Results suggest that even low-cost signal collection receivers can achieve greater than 90% authentication accuracy within a defense system based on radio frequency fingerprinting. The third strategy, based on received signal strength quantification, can be leveraged to rapidly locate suspicious transmission sources and to perform physical security audits of critical networks. Results herein reduce mean absolute percentage error of a widely-utilized distance estimation model 20% by examining signal strength measurements from real-world networks in a military hospital and a civilian hospital

    Machine Learning in Wireless Sensor Networks for Smart Cities:A Survey

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) techniques have huge potential to efficiently manage the automated operation of the internet of things (IoT) nodes deployed in smart cities. In smart cities, the major IoT applications are smart traffic monitoring, smart waste management, smart buildings and patient healthcare monitoring. The small size IoT nodes based on low power Bluetooth (IEEE 802.15.1) standard and wireless sensor networks (WSN) (IEEE 802.15.4) standard are generally used for transmission of data to a remote location using gateways. The WSN based IoT (WSN-IoT) design problems include network coverage and connectivity issues, energy consumption, bandwidth requirement, network lifetime maximization, communication protocols and state of the art infrastructure. In this paper, the authors propose machine learning methods as an optimization tool for regular WSN-IoT nodes deployed in smart city applications. As per the author’s knowledge, this is the first in-depth literature survey of all ML techniques in the field of low power consumption WSN-IoT for smart cities. The results of this unique survey article show that the supervised learning algorithms have been most widely used (61%) as compared to reinforcement learning (27%) and unsupervised learning (12%) for smart city applications
    corecore