627 research outputs found

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    On the detection of myocardial scar based on ECG/VCG analysis

    No full text
    In this paper, we address the problem of detecting the presence of myocardial scar from standard ECG/VCG recordings, giving effort to develop a screening system for the early detection of scar in the point-of-care. Based on the pathophysiological implications of scarred myocardium, which results in disordered electrical conduction, we have implemented four distinct ECG signal processing methodologies in order to obtain a set of features that can capture the presence of myocardial scar. Two of these methodologies: a.) the use of a template ECG heartbeat, from records with scar absence coupled with Wavelet coherence analysis and b.) the utilization of the VCG are novel approaches for detecting scar presence. Following, the pool of extracted features is utilized to formulate an SVM classification model through supervised learning. Feature selection is also employed to remove redundant features and maximize the classifier's performance. Classification experiments using 260 records from three different databases reveal that the proposed system achieves 89.22% accuracy when applying 10- fold cross validation, and 82.07% success rate when testing it on databases with different inherent characteristics with similar levels of sensitivity (76%) and specificity (87.5%)

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    ECG based Prediction Model for Cardiac-Related Diseases using Machine Learning Techniques

    Get PDF
    This dissertation presents research on the construction of predictive models for health conditions through the application of Artificial Intelligence methods. The work is thus focused on the prediction, in the short and long term, of Atrial Fibrillation conditions through the analysis of Electrocardiography exams, with the use of several techniques to reduce noise and interference, as well as their representation through spectrograms and their application in Artificial Intelligence models, specifically Deep Learning. The training and testing processes of the models made use of a publicly available database. In its two approaches, predictive algorithms were obtained with an accuracy of 96.73% for a short horizon prediction and 96.52% for long Atrial Fibrillation prediction horizon. The main objectives of this dissertation are thus the study of works already carried out in the area during the last decade, to present a new methodology of prediction of the presented condition, as well as to present and discuss its results, including suggestions for improvement for future development.Esta dissertação descreve a construção de modelos preditivos de condições de saúde através de aplicação de métodos de Inteligência Artificial. O trabalho é assim focado na predição, a curto e longo prazo, de condições de Fibrilhação Auricular através da análise de exames de Eletrocardiografia, com a utilização de diversas técnicas de redução de ruído e de interferência, bem como a sua representação através de espectrogramas e sua aplicação em modelos de Inteligência Artificial, concretamente de Aprendizagem Profunda (Deep Learning na língua inglesa). Os processos de treino e teste dos modelos obtidos recorreram a uma base de dados publicamente disponível. Nas suas duas abordagens, foram obtidos algoritmos preditivos com uma precisão de 96.73% para uma predição de curto horizonte e 96.52% para longo horizonte de predição de Fibrilhação Auricular. Os objetivos principais da presente dissertação são assim o estudo de trabalhos já realizados na área durante a última década, apresentar uma nova metodologia de predição da condição apresentada, bem como apresentar e discutir os seus resultados, incluindo sugestões de melhoria para futuro desenvolvimento

    Atrial fibrillation detection using support vector machine and electrocardiographic descriptive statistics

    Full text link
    Copyright © 2017 Inderscience Enterprises Ltd. This paper proposes a new technique for detecting atrial fibrillation (AF). The method employs electrocardiographic features and support vector machine (SVM). The features include descriptive statistics of electrocardiographic RR interval. The RR interval is the distance in time between two consecutive R-peaks of electrocardiogram. AF detections using SVM with different electrocardiographic features and different SVM free parameters are explored. Employing SVM with the optimal free parameters and all the proposed electrocardiographic features, we find an AF detection technique with a comparable performance. The best performance obtained by the technique is 98.47% and 97.84%, in terms of sensitivity and specificity
    corecore