1,095 research outputs found

    Comparative Study of Fault Tolerant Switched Flux Permanent Magnet Machines

    Get PDF
    The fault tolerant capabilities are compared in this paper for the conventional double layer switched flux permanent magnet machine and its single layer counterparts, i.e. C-core, Ecore and modular. The comparison includes the inter-turn shortcircuit and irreversible demagnetization faults. A combination of Simulink and finite element models is used in the study. Based on the predictions, it is found that the modular topology produces the lowest short-circuit current and also has the best demagnetization withstand capability while the conventional one produces the highest short-circuit current and has the worst demagnetization withstand capability. The frozen permeability method is employed to separate the flux produced by armature current and magnets, and the results showed that, besides the influence of short-circuit current, the available magnet volume and magnetic circuit configuration play an important role in the demagnetization process. It is also found that removing half of the magnets, such as using C-core, E-core and modular topologies, generally improves the demagnetization withstand capability and also increases the torque per magnet volume. Measured results are also presented to validate the short-circuit current predictions and magnet demagnetization

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications

    Comparison and Design Optimization of a Five-Phase Flux-Switching PM Machine for In-Wheel Traction Applications

    Get PDF
    A comparative study of five-phase outer-rotor flux-switching permanent magnet (FSPM) machines with different topologies for in-wheel traction applications is presented in this paper. Those topologies include double-layer winding, single-layer winding, C-core, and E-core configurations. The electromagnetic performance in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerance capability are all investigated in detail. The results indicate that the E-core FSPM machine has performance advantages. Furthermore, two kinds of E-core FSPM machines with different stator and rotor pole combinations are optimized, respectively. In order to reduce the computational burden during the large-scale optimization process, a mathematical technique is developed based on the concept of computationally efficient finite-element analysis. While a differential evolution algorithm serves as a global search engine to target optimized designs. Subsequently, multiobjective tradeoffs are presented based on a Pareto-set for 20 000 candidate designs. Finally, an optimal design is prototyped, and some experimental results are given to confirm the validity of the simulation results in this paper

    Investigation on Multi-Physics Modelling of Fault Tolerant Stator Mounted Permanent Magnet Machines

    Get PDF
    This thesis investigates the stator mounted permanent magnet machines from the point of view of fault tolerant capability. The topologies studied are switched flux (and its derivatives C-Core, E-Core and modular), doubly salient and flux reversal permanent magnet machines. The study focuses on fault mode operation of these machines looking at severe conditions like short-circuit and irreversible demagnetization. The temperature dependence of the permanent magnet properties is taken into account. A complex multi-physics model is developed in order to assess the thermal state evolution of the switched flux machine during both healthy and faulty operation modes. This model couples the electro-mechanical domain with the thermal one, thus being able to consider a large range of operating conditions. It also solves issues such as large computational time and resources while still maintaining the accuracy. Experimental results are also provided for each chapter. A hierarchy in terms of fault tolerant capability is established. A good compromise can be reached between performance and fault tolerant capability. The mechanism of the magnet irreversible demagnetization process is explained based on magnetic circuit configuration. It is also found that the studied topology are extremely resilient against the demagnetizing influence of the short-circuit current and the magnet demagnetization is almost only affected by temperature

    Optimal torque control of fault-tolerant permanent magnet brushloss machines

    Get PDF
    Describes a novel optimal torque control strategy for fault-tolerant permanent magnet brushless ac drives operating in both constant torque and constant power modes. The proposed control strategy enables ripple-free torque operation to be achieved while minimizing the copper loss under voltage and current constraints. The utility of the proposed strategy is demonstrated by computer simulations on a five-phase fault-tolerant drive system

    Permanent-magnet brushless machines with unequal tooth widths and similar slot and pole numbers

    Get PDF
    This paper presents a comparative study of three-phase permanent-magnet brushless machines in which the slot and pole numbers are similar, with reference to conventional brushless dc machines in which the ratio of the slot number to pole number is usually 3 : 2. Three different motor designs are considered. Two have equal tooth widths, with one having a coil wound on every tooth and the other only having a coil wound on alternate teeth, while the third machine also has coils wound on alternate teeth but these are wider than the unwound teeth while the width of their tooth tips is almost equal to the rotor pole pitch in order to maximize the flux linkage and torque. Analytical and finite-element methods are employed to predict the flux-linkage and back-electromotive-force waveforms, and the self- and mutual-inductances, and these are shown to be in good agreement with measured results. It is also shown that the third machine is eminently appropriate for brushless dc operation

    Fault-Tolerant Control of a Flux-switching Permanent Magnet Synchronous Machine

    Get PDF
    Je jasné, že nejúspěšnější konstrukce zahrnuje postup vícefázového řízení, ve kterém každá fáze může být považována za samostatný modul. Provoz kterékoliv z jednotek musí mít minimální vliv na ostatní, a to tak, že v případě selhání jedné jednotky ostatní mohou být v provozu neovlivněny. Modulární řešení vyžaduje minimální elektrické, magnetické a tepelné ovlivnění mezi fázemi řízení (měniče). Synchronní stroje s pulzním tokem a permanentními magnety se jeví jako atraktivní typ stroje, jejíž přednostmi jsou vysoký kroutící moment, jednoduchá a robustní konstrukce rotoru a skutečnost, že permanentní magnety i cívky jsou umístěny společně na statoru. FS-PMSM jsou poměrně nové typy střídavého stroje stator-permanentní magnet, které představují významné přednosti na rozdíl od konvenčních rotorů - velký kroutící moment, vysoký točivý moment, v podstatě sinusové zpětné EMF křivky, zároveň kompaktní a robustní konstrukce díky umístění magnetů a vinutí kotvy na statoru. Srovnání výsledků mezi FS-PMSM a klasickými motory na povrchu upevněnými PM (SPM) se stejnými parametry ukazuje, že FS-PMSM vykazuje větší vzduchové mezery hustoty toku, vyšší točivý moment na ztráty v mědi, ale také vyšší pulzaci díky reluktančnímu momentu. Pro stroje buzené permanentními magnety se jedná o tradiční rozpor mezi požadavkem na vysoký kroutící moment pod základní rychlostí (oblast konstantního momentu) a provozem nad základní rychlostí (oblast konstantního výkonu), zejména pro aplikace v hybridních vozidlech. Je předložena nová topologie synchronního stroje s permanentními magnety a spínaným tokem odolného proti poruchám, která je schopná provozu během vinutí naprázdno a zkratovaného vinutí i poruchách měniče. Schéma je založeno na dvojitě vinutém motoru napájeném ze dvou oddělených vektorově řízených napěťových zdrojů. Vinutí jsou uspořádána takovým způsobem, aby tvořila dvě nezávislé a oddělené sady. Simulace a experimentální výzkum zpřesní výkon během obou scénářů jak za normálního provozu, tak za poruch včetně zkratových závad a ukáží robustnost pohonu za těchto podmínek. Tato práce byla publikována v deseti konferenčních příspěvcích, dvou časopisech a knižní kapitole, kde byly představeny jak topologie pohonu a aplikovaná řídící schémata, tak analýzy jeho schopnosti odolávat poruchám.It has become clear that the most successful design approach involves a multiple phase drive in which each phase may be regarded as a single-module. The operation of any one module must have minimal impact upon the others, so that in the event of that module failing the others can continue to operate unaffected. The modular approach requires that there should be minimal electrical, magnetic and thermal interaction between phases of the drive. Flux-Switching permanent magnet synchronous machines (FS-PMSM) have recently emerged as an attractive machine type virtue of their high torque densities, simple and robust rotor structure and the fact that permanent magnets and coils are both located on the stator. Flux-switching permanent magnet (FS-PMSM) synchronous machines are a relatively new topology of stator PM brushless machine. They exhibit attractive merits including the large torque capability and high torque (power) density, essentially sinusoidal back-EMF waveforms, as well as having a compact and robust structure due to both the location of magnets and armature windings in the stator instead of the rotor as those in the conventional rotor-PM machines. The comparative results between a FS-PMSM and a traditional surface-mounted PM (SPM) motor having the same specifications reveal that FS-PMSM exhibits larger air-gap flux density, higher torque per copper loss, but also a higher torque ripple due to cogging -torque. However, for solely permanent magnets excited machines, it is a traditional contradiction between the requests of high torque capability under the base-speed (constant torque region) and wide speed operation above the base speed (constant power region) especially for hybrid vehicle applications. A novel fault-tolerant FS-PMSM drive topology is presented, which is able to operate during open- and short-circuit winding and converter faults. The scheme is based on a dual winding motor supplied from two separate vector-controlled voltage-sourced inverter drives. The windings are arranged in a way so as to form two independent and isolated sets. Simulation and experimental work will detail the driver’s performance during both healthy- and faulty- scenarios including short-circuit faults and will show the drive robustness to operate in these conditions. The work has been published in ten conference papers, two journal papers and a book chapter, presenting both the topology of the drive and the applied control schemes, as well as analysing the fault-tolerant capabilities of the drive.

    Torque-ripple minimization in modular permanent-magnet brushless machines

    Get PDF
    This paper discusses the suitability of four-phase, five-phase, and six-phase modular machines, for use in applications where servo characteristics and fault tolerance are key requirements. It is shown that an optimum slot number and pole number combination exists, for which excellent servo characteristics could be achieved, under healthy operating conditions, with minimum effects on the power density of the machine. To eliminate torque ripple due to residual cogging and various fault conditions, the paper describes a novel optimal torque control strategy for the modular permanent-magnet machines operating in both constant torque and constant power modes. The proposed control strategy enables ripple-free torque operation to be achieved, while minimizing the copper loss under voltage and current constraints. The utility of the proposed strategy is demonstrated by computer simulations on a four-phase fault-tolerant drive system

    Linear Machines for Long Stroke Applications: a review

    Get PDF
    This document reviews the current state of the art in the linear machine technology. First,the recent advancements in linear induction, switched reluctance and permanent magnet machines arepresented. The ladder slit secondary configuration is identified as an interesting configuration for linearinduction machines. In the case of switched reluctance machines, the mutually-coupled configuration hasbeen found to equate the thrust capability of conventional permanent magnet machines. The capabilities ofthe so called linear primary permanent magnet, viz. switched-flux, flux-reversal, doubly-salient and verniermachines are presented afterwards. A guide of different options to enhance several characteristics of linearmachines is also listed. A qualitative comparison of the capabilities of linear primary permanent magnetmachines is given later, where linear vernier and switched-flux machines are identified as the most interestingconfigurations for long stroke applications. In order to demonstrate the validity of the presented comparison,three machines are selected from the literature, and their capabilities are compared under the same conditionsto a conventional linear permanent magnet machine. It is found that the flux-reversal machines suffer froma very poor power factor, whereas the thrust capability of both vernier and switched-flux machines isconfirmed. However, the overload capability of these machines is found to be substantially lower than theone from the conventional machine. Finally, some different research topics are identified and suggested foreach type of machine

    Investigation of Irreversible Demagnetization in Switched Flux Permanent Magnet Machines under Short-Circuit Conditions

    Get PDF
    The irreversible magnet demagnetization phenomena are investigated in this paper , under both healthy and short - circuit conditions for a switched flux permanent magnet (SFPM) machine. The temperature effects on permanent magnet material are taken into account and the influence of short - circuit current over demagnetization is evaluated. In order to calculate the short - circuit current (mainly inter - turn short - circuit), the MATLAB/Simulink model has been employed. The aforementioned short - circuit current is then fed to the finite element model, so the demagnetization analysis can be carried out. Variou s fault scenarios are investigated, including high speeds and high fault severity. It is found that the short - circuit current has li mited effect on the magnet demagnetization due to particular features of the SFPM machines. The mechanism of demagnetization has been revealed and found out to be mainly due to temperature rise and poor PM materials utilization . Experiments have been carried out to validate the MATLAB/Simulink model for short - circuit current predictions
    corecore