95 research outputs found

    Unsupervised tracking of time-evolving data streams and an application to short-term urban traffic flow forecasting

    Get PDF
    I am indebted to many people for their help and support I receive during my Ph.D. study and research at DIBRIS-University of Genoa. First and foremost, I would like to express my sincere thanks to my supervisors Prof.Dr. Masulli, and Prof.Dr. Rovetta for the invaluable guidance, frequent meetings, and discussions, and the encouragement and support on my way of research. I thanks all the members of the DIBRIS for their support and kindness during my 4 years Ph.D. I would like also to acknowledge the contribution of the projects Piattaforma per la mobili\ue0 Urbana con Gestione delle INformazioni da sorgenti eterogenee (PLUG-IN) and COST Action IC1406 High Performance Modelling and Simulation for Big Data Applications (cHiPSet). Last and most importantly, I wish to thanks my family: my wife Shaimaa who stays with me through the joys and pains; my daughter and son whom gives me happiness every-day; and my parents for their constant love and encouragement

    Time-Series Data Mining:A Review

    Get PDF
    Data mining refers to the extraction of knowledge by analyzing the data from different perspectives and accumulates them to form useful information which could help the decision makers to take appropriate decisions. Classification and clustering has been the two broad areas in data mining. As the classification is a supervised learning approach, the clustering is an unsupervised learning approach and hence can be performed without the supervision of the domain experts. The basic concept is to group the objects in such a way so that the similar objects are closer to each. Time series data is observation of the data over a period of time. The estimation of the parameter, outlier detection and transformation of the data are some ofthe basic issues in handling the time series data. An approach is given for clustering the data based on the membership values assigned to each data point compressing the effect of outlier or noise present in the data. The Possibilistic Fuzzy C-Means (PFCM) with Error Prediction (EP) are done for the clustering and noise identification in the time-series data

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Critical Asset and Portfolio Risk Analysis for Homeland Security

    Get PDF
    Providing a defensible basis for allocating resources for critical infrastructure and key resource protection is an important and challenging problem. Investments can be made in countermeasures that improve the security and hardness of a potential target exposed to a security hazard, deterrence measures to decrease the likeliness of a security event, and capabilities to mitigate human, economic, and other types of losses following an incident. Multiple threat types must be considered, spanning everything from natural hazards, industrial accidents, and human-caused security threats. In addition, investment decisions can be made at multiple levels of abstraction and leadership, from tactical decisions for real-time protection of assets to operational and strategic decisions affecting individual assets and assets comprising a regions or sector. The objective of this research is to develop a probabilistic risk analysis methodology for critical asset protection, called Critical Asset and Portfolio Risk Analysis, or CAPRA, that supports operational and strategic resource allocation decisions at any level of leadership or system abstraction. The CAPRA methodology consists of six analysis phases: scenario identification, consequence and severity assessment, overall vulnerability assessment, threat probability assessment, actionable risk assessment, and benefit-cost analysis. The results from the first four phases of CAPRA combine in the fifth phase to produce actionable risk information that informs decision makers on where to focus attention for cost-effective risk reduction. If the risk is determined to be unacceptable and potentially mitigable, the sixth phase offers methods for conducting a probabilistic benefit-cost analysis of alternative risk mitigation strategies. Several case studies are provided to demonstrate the methodology, including an asset-level analysis that leverages systems reliability analysis techniques and a regional-level portfolio analysis that leverages techniques from approximate reasoning. The main achievements of this research are three-fold. First, this research develops methods for security risk analysis that specifically accommodates the dynamic behavior of intelligent adversaries, to include their tendency to shift attention toward attractive targets and to seek opportunities to exploit defender ignorance of plausible targets and attack modes to achieve surprise. Second, this research develops and employs an expanded definition of vulnerability that takes into account all system weaknesses from initiating event to consequence. That is, this research formally extends the meaning of vulnerability beyond security weaknesses to include target fragility, the intrinsic resistance to loss of the systems comprising the asset, and weaknesses in response and recovery capabilities. Third, this research demonstrates that useful actionable risk information can be produced even with limited information supporting precise estimates of model parameters

    Temporal - spatial recognizer for multi-label data

    Get PDF
    Pattern recognition is an important artificial intelligence task with practical applications in many fields such as medical and species distribution. Such application involves overlapping data points which are demonstrated in the multi- label dataset. Hence, there is a need for a recognition algorithm that can separate the overlapping data points in order to recognize the correct pattern. Existing recognition methods suffer from sensitivity to noise and overlapping points as they could not recognize a pattern when there is a shift in the position of the data points. Furthermore, the methods do not implicate temporal information in the process of recognition, which leads to low quality of data clustering. In this study, an improved pattern recognition method based on Hierarchical Temporal Memory (HTM) is proposed to solve the overlapping in data points of multi- label dataset. The imHTM (Improved HTM) method includes improvement in two of its components; feature extraction and data clustering. The first improvement is realized as TS-Layer Neocognitron algorithm which solves the shift in position problem in feature extraction phase. On the other hand, the data clustering step, has two improvements, TFCM and cFCM (TFCM with limit- Chebyshev distance metric) that allows the overlapped data points which occur in patterns to be separated correctly into the relevant clusters by temporal clustering. Experiments on five datasets were conducted to compare the proposed method (imHTM) against statistical, template and structural pattern recognition methods. The results showed that the percentage of success in recognition accuracy is 99% as compared with the template matching method (Featured-Based Approach, Area-Based Approach), statistical method (Principal Component Analysis, Linear Discriminant Analysis, Support Vector Machines and Neural Network) and structural method (original HTM). The findings indicate that the improved HTM can give an optimum pattern recognition accuracy, especially the ones in multi- label dataset

    A novel approach to data mining using simplified swarm optimization

    Get PDF
    Data mining has become an increasingly important approach to deal with the rapid growth of data collected and stored in databases. In data mining, data classification and feature selection are considered the two main factors that drive people when making decisions. However, existing traditional data classification and feature selection techniques used in data management are no longer enough for such massive data. This deficiency has prompted the need for a new intelligent data mining technique based on stochastic population-based optimization that could discover useful information from data. In this thesis, a novel Simplified Swarm Optimization (SSO) algorithm is proposed as a rule-based classifier and for feature selection. SSO is a simplified Particle Swarm Optimization (PSO) that has a self-organising ability to emerge in highly distributed control problem space, and is flexible, robust and cost effective to solve complex computing environments. The proposed SSO classifier has been implemented to classify audio data. To the author’s knowledge, this is the first time that SSO and PSO have been applied for audio classification. Furthermore, two local search strategies, named Exchange Local Search (ELS) and Weighted Local Search (WLS), have been proposed to improve SSO performance. SSO-ELS has been implemented to classify the 13 benchmark datasets obtained from the UCI repository database. Meanwhile, SSO-WLS has been implemented in Anomaly-based Network Intrusion Detection System (A-NIDS). In A-NIDS, a novel hybrid SSO-based Rough Set (SSORS) for feature selection has also been proposed. The empirical analysis showed promising results with high classification accuracy rate achieved by all proposed techniques over audio data, UCI data and KDDCup 99 datasets. Therefore, the proposed SSO rule-based classifier with local search strategies has offered a new paradigm shift in solving complex problems in data mining which may not be able to be solved by other benchmark classifiers
    • …
    corecore