426 research outputs found

    Practical Inherently Safer Design Approaches During Early Process Design Stages Aiming for Sustainability

    Get PDF
    In traditional industrial process design approaches, techno-economic criteria have been the primary objectives in the early process design stages. Safety is often considered only in the later design stage (e.g., detailed engineering stage). Such a traditional approach is that most of the design degrees of freedom, including technology and configuration issues, have already been determined when considering safety. Modifying a process is costly or unreliable at later stages. To solve this issue, there have been numerous attempts to consider process safety during the early design stages in safety engineers and researchers. In particular, special attention to adopting inherently safer design (ISD) has been made because ISD is deemed the most cost-effective risk reduction strategy at early design stages. However, it is still challenging to adopt ISD for process engineers at the early design stages because of the lack of guidance and insufficient information on upcoming process facilities. To address this challenge, this dissertation consists of three peer-reviewed journal papers [Articles #1 - #3]. With respect to the progress of inherently safer design (in particular, during the early design stage) over the last three decades, Article #1 selects 73 inherent safety assessment tools, which can be utilized during the early design stages, and categorized into three groups: hazard-based inherent safety assessment tools (H-ISATs) for 22 tools, risk-based inherent safety assessment tools (R-ISATs) for 33 tools, and cost-optimal inherent safety assessment tools (CO-ISATs) for 18 tools. The goal of this article is to enable process engineers to use all the available design degrees of freedom to mitigate risk early enough in the design process. Article #2 analyzes 94 chemical process incidents investigated by the U.S. Chemical Safety and Hazard Investigation Board (CSB) reports. To analyze in a systematic approach, this article proposes 17 incident cause factors, 6 scenario factors, and 6 consequence factors to find out whether ISD would have helped to prevent these incidents. Article #3 proposes hands-on predictive models of the flash point, the heat of combustion, lower flammability limit (LFL), and upper flammability limit (UFL). By incorporating the nonlinearity and transformation along with linearity of variables, this article constructed practical, reliable regression models thoroughly with readily available variables—the number of all atoms, molecular weights, and boiling points. The purpose is to enable a process engineer to quickly obtain hazardous properties of intended process materials

    Machine Learning Small Molecule Properties in Drug Discovery

    Full text link
    Machine learning (ML) is a promising approach for predicting small molecule properties in drug discovery. Here, we provide a comprehensive overview of various ML methods introduced for this purpose in recent years. We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity). We discuss existing popular datasets and molecular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks. We highlight also challenges of predicting and optimizing multiple properties during hit-to-lead and lead optimization stages of drug discovery and explore briefly possible multi-objective optimization techniques that can be used to balance diverse properties while optimizing lead candidates. Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed. Overall, this review provides insights into the landscape of ML models for small molecule property predictions in drug discovery. So far, there are multiple diverse approaches, but their performances are often comparable. Neural networks, while more flexible, do not always outperform simpler models. This shows that the availability of high-quality training data remains crucial for training accurate models and there is a need for standardized benchmarks, additional performance metrics, and best practices to enable richer comparisons between the different techniques and models that can shed a better light on the differences between the many techniques.Comment: 46 pages, 1 figur

    Towards Arginase Inhibition: Hybrid SAR Protocol for Property Mapping of Chlorinated N-arylcinnamamides

    Full text link
    peer reviewedA series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 ”M. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 ”M was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 ”M. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an ‘averaged’ selection-driven interaction pattern was produced based in namely ‘pseudo–consensus’ 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds

    Application of MIA-QSAR in Designing New Protein P38 MAP Kinase Compounds Using a Genetic Algorithm

    Get PDF
    Multivariate image analysis quantitative structure-activity relationship (MIA-QSAR) study aims to obtain information from a descriptor set, which are image pixels of two-dimensional molecule structures. In the QSAR study of protein P38 mitogen-activated protein (MAP) kinase compounds, the genetic algorithm application for pixel selection and image processing is investigated. There is a quantitative relationship between the structure and the pIC50 based on the information obtained. (The pIC50 is the negative logarithm of the half-maximal inhibitory concentration ( IC50 ), so pIC50 = −log IC50 .) Protein P38 MAP kinase inhibitors are used in the treatment of malignant tumors. The development of a model to predict the pIC50 of these compounds was performed in this study. To accomplish this, the molecules were first plotted and fixed in the same coordinates in ChemSketch. Then, the images were processed in the MATLAB program. Partial least squares (PLS) model, orthogonal signal correction partial least squares (OSC-PLS) model, and genetic algorithm partial least squares (GA-PLS) model methods are used to generate quantitative models, and pIC50 prediction is performed. The GA-PLS model has the highest predictive power for a series of statistical parameters such as root mean square error of prediction (RMSEP) and relative standard errors of prediction (RSEP). Finally, the molecular junction (docking) was done for predicted molecules in quantitative structure activity relationship (QSAR) with an appropriate receptor and acceptable results were obtained. These results are good and proper for the prediction of compounds with better properties

    Applicability domains of neural networks for toxicity prediction

    Get PDF
    In this paper, the term "applicability domain" refers to the range of chemical compounds for which the statistical quantitative structure-activity relationship (QSAR) model can accurately predict their toxicity. This is a crucial concept in the development and practical use of these models. First, a multidisciplinary review is provided regarding the theory and practice of applicability domains in the context of toxicity problems using the classical QSAR model. Then, the advantages and improved performance of neural networks (NNs), which are the most promising machine learning algorithms, are reviewed. Within the domain of medicinal chemistry, nine different methods using NNs for toxicity prediction were compared utilizing 29 alternative artificial intelligence (AI) techniques. Similarly, seven NN-based toxicity prediction methodologies were compared to six other AI techniques within the realm of food safety, 11 NN-based methodologies were compared to 16 different AI approaches in the environmental sciences category and four specific NN-based toxicity prediction methodologies were compared to nine alternative AI techniques in the field of industrial hygiene. Within the reviewed approaches, given known toxic compound descriptors and behaviors, we observed a difficulty in being able to extrapolate and predict the effects with untested chemical compounds. Different methods can be used for unsupervised clustering, such as distance-based approaches and consensus-based decision methods. Additionally, the importance of model validation has been highlighted within a regulatory context according to the Organization for Economic Co-operation and Development (OECD) principles, to predict the toxicity of potential new drugs in medicinal chemistry, to determine the limits of detection for harmful substances in food to predict the toxicity limits of chemicals in the environment, and to predict the exposure limits to harmful substances in the workplace. Despite its importance, a thorough application of toxicity models is still restricted in the field of medicinal chemistry and is virtually overlooked in other scientific domains. Consequently, only a small proportion of the toxicity studies conducted in medicinal chemistry consider the applicability domain in their mathematical models, thereby limiting their predictive power to untested drugs. Conversely, the applicability of these models is crucial; however, this has not been sufficiently assessed in toxicity prediction or in other related areas such as food science, environmental science, and industrial hygiene. Thus, this review sheds light on the prevalent use of Neural Networks in toxicity prediction, thereby serving as a valuable resource for researchers and practitioners across these multifaceted domains that could be extended to other fields in future research

    Computational design of quinone electrolytes for redox flow batteries using high-throughput machine learning and theoretical calculations

    Get PDF
    Molecular design of redox-active materials with higher solubility and greater redox potential windows is instrumental in enhancing the performance of redox flow batteries Here we propose a computational procedure for a systematic evaluation of organic redox-active species by combining machine learning, quantum-mechanical, and classical density functional theory calculations. 1,517 small quinone molecules were generated from the building blocks of benzoquinone, naphthoquinone, and anthraquinone with different substituent groups. The physics-based methods were used to predict HOMO-LUMO gaps and solvation free energies that account for the redox potential differences and aqueous solubility, respectively. The high-throughput calculations were augmented with the quantitative structure-property relationship analyses and machine learning/graph network modeling to evaluate the materials’ overall behavior. The computational procedure was able to reproduce high-performance cathode electrolyte materials consistent with experimental observations and identify new electrolytes for RFBs by screening 100,000 di-substituted quinone molecules, the largest library of redox-active quinone molecules ever investigated. The efficient computational platform may facilitate a better understanding of the structure-function relationship of quinone molecules and advance the design and application of all-organic active materials for RFBs

    Anticancer drug discovery using artificial intelligence: an application in pharmacological activity prediction

    Get PDF
    Hematological cancers are a heterogeneous family of diseases that can be divided into leukemias, lymphomas, and myelomas, often called “liquid tumors”. Since they cannot be surgically removable, chemotherapy represents the mainstay of their treatment. However, it still faces several challenges like drug resistance and low response rate, and the need for new anticancer agents is compelling. The drug discovery process is long-term, costly, and prone to high failure rates. With the rapid expansion of biological and chemical "big data", some computational techniques such as machine learning tools have been increasingly employed to speed up and economize the whole process. Machine learning algorithms can create complex models with the aim to determine the biological activity of compounds against several targets, based on their chemical properties. These models are defined as multi-target Quantitative Structure-Activity Relationship (mt-QSAR) and can be used to virtually screen small and large chemical libraries for the identification of new molecules with anticancer activity. The aim of my Ph.D. project was to employ machine learning techniques to build an mt-QSAR classification model for the prediction of cytotoxic drugs simultaneously active against 43 hematological cancer cell lines. For this purpose, first, I constructed a large and diversified dataset of molecules extracted from the ChEMBL database. Then, I compared the performance of different ML classification algorithms, until Random Forest was identified as the one returning the best predictions. Finally, I used different approaches to maximize the performance of the model, which achieved an accuracy of 88% by correctly classifying 93% of inactive molecules and 72% of active molecules in a validation set. This model was further applied to the virtual screening of a small dataset of molecules tested in our laboratory, where it showed 100% accuracy in correctly classifying all molecules. This result is confirmed by our previous in vitro experiments

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    ML meets MLn: machine learning in ligand promoted homogeneous catalysis

    Get PDF
    The benefits of using machine learning approaches in the design, optimisation and understanding of homogeneous catalytic processes are being increasingly realised. We focus on the understanding and implementation of key concepts, which serve as conduits to more advanced chemical machine learning literature, much of which is (presently) outside the area of homogeneous catalysis. Potential pitfalls in the ‘workflow’ procedures needed in the machine learning process are identified and all the examples provided are in a chemical sciences context, including several from ‘real world’ catalyst systems. Finally, potential areas of expansion and impact for machine learning in homogeneous catalysis in the future are considered

    Selection of optimal validation methods for quantitative structure–activity relationships and applicability domain

    Get PDF
    This brief literature survey groups the (numerical) validation methods and emphasizes the contradictions and confusion considering bias, variance and predictive performance. A multicriteria decision making analysis has been made by the sum of absolute ranking differences (SRD), illustrated with five case studies (seven examples). SRD was applied to compare external and cross-validation techniques, indicators of predictive performance, and to select optimal methods to determine the applicability domain (AD). The ordering of model validation methods was in accordance with the sayings of original authors, but they are contradictory within each other, suggesting that any variants of cross-validation can be superior or inferior to other variants depending on the algorithm, data structure and circumstances applied. A simple fivefold cross-validation proved to be superior to Bayesian Information Criterion in the vast majority of situations. It is simply not sufficient to test a numerical validation method in one situation only, even if it is a well-defined one. SRD as a preferable multicriteria decision making algorithm is suitable for tailoring the techniques for validation, and for the optimal determination of the applicability domain according to the data set in question
    • 

    corecore