346 research outputs found

    Study of basic vector operations on Intel Xeon Phi and NVIDIA Tesla using OpenCL

    Get PDF
    The present work is an analysis of the performance of the basic vector operations AXPY, DOT and SpMV using OpenCL. The code was tested on the NVIDIA Tesla S2050 GPU and Intel Xeon Phi 3120A coprocessor. Due to the nature of the AXPY function, only two versions were implemented, the routine to be executed by the CPU and the kernel to be executed on the previously mentioned devices. It was studied how they perform for different vector’s sizes. Their results show the NVIDIA architecture better suited for the smaller vectors sizes and the Intel architecture for the larger vector’s sizes. For the DOT and SpMV functions, there are three versions implemented. The first is the CPU routine, the second one is an OpenCL kernel that uses local memory and the third one is an OpenCL kernel that only uses global memory. The kernels that use local memory are tested by varying the size of the work-group; the kernels that only uses global memory are tested by varying the arrays size. In the case of the first ones, the results show the optimum work-group size and that the NVIDIA architecture benefits from the use of local memory. For the latter kernels, the results show that larger computational loads benefits the Intel architectureThis work has been supported by FEDER funds and Xunta de Galicia under contract GRC 2014/008, and by Spanish Government (MCYT) under project TEC2010-17320 and TIN-2013-41129-PS

    An energy‐aware performance analysis of SWIMM: Smith–Waterman implementation on Intel's Multicore and Manycore architectures

    Get PDF
    Alignment is essential in many areas such as biological, chemical and criminal forensics. The well‐known Smith–Waterman (SW) algorithm is able to retrieve the optimal local alignment with quadratic time and space complexity. There are several implementations that take advantage of computing parallelization, such as manycores, FPGAs or GPUs, in order to reduce the alignment effort. In this research, we adapt, develop and tune the SW algorithm named SWIMM on a heterogeneous platform based on Intel's Xeon and Xeon Phi coprocessor. SWIMM is a free tool available in a public git repository https://github.com/enzorucci/SWIMM. We efficiently exploit data and thread‐level parallelism, reaching up to 380 GCUPS on heterogeneous architecture, 350 GCUPS for the isolated Xeon and 50 GCUPS on Xeon Phi. Despite the heterogeneous implementation obtaining the best performance, it is also the most energy‐demanding. In fact, we also present a trade‐off analysis between performance and power consumption. The greenest configuration is based on an isolated multicore system that exploits AVX2 instruction set architecture reaching 1.5 GCUPS/Watts.Facultad de Informátic

    Scheduling and Tuning Kernels for High-performance on Heterogeneous Processor Systems

    Get PDF
    Accelerated parallel computing techniques using devices such as GPUs and Xeon Phis (along with CPUs) have proposed promising solutions of extending the cutting edge of high-performance computer systems. A significant performance improvement can be achieved when suitable workloads are handled by the accelerator. Traditional CPUs can handle those workloads not well suited for accelerators. Combination of multiple types of processors in a single computer system is referred to as a heterogeneous system. This dissertation addresses tuning and scheduling issues in heterogeneous systems. The first section presents work on tuning scientific workloads on three different types of processors: multi-core CPU, Xeon Phi massively parallel processor, and NVIDIA GPU; common tuning methods and platform-specific tuning techniques are presented. Then, analysis is done to demonstrate the performance characteristics of the heterogeneous system on different input data. This section of the dissertation is part of the GeauxDock project, which prototyped a few state-of-art bioinformatics algorithms, and delivered a fast molecular docking program. The second section of this work studies the performance model of the GeauxDock computing kernel. Specifically, the work presents an extraction of features from the input data set and the target systems, and then uses various regression models to calculate the perspective computation time. This helps understand why a certain processor is faster for certain sets of tasks. It also provides the essential information for scheduling on heterogeneous systems. In addition, this dissertation investigates a high-level task scheduling framework for heterogeneous processor systems in which, the pros and cons of using different heterogeneous processors can complement each other. Thus a higher performance can be achieve on heterogeneous computing systems. A new scheduling algorithm with four innovations is presented: Ranked Opportunistic Balancing (ROB), Multi-subject Ranking (MR), Multi-subject Relative Ranking (MRR), and Automatic Small Tasks Rearranging (ASTR). The new algorithm consistently outperforms previously proposed algorithms with better scheduling results, lower computational complexity, and more consistent results over a range of performance prediction errors. Finally, this work extends the heterogeneous task scheduling algorithm to handle power capping feature. It demonstrates that a power-aware scheduler significantly improves the power efficiencies and saves the energy consumption. This suggests that, in addition to performance benefits, heterogeneous systems may have certain advantages on overall power efficiency
    corecore