12,206 research outputs found

    Transcriptional Regulation: a Genomic Overview

    Get PDF
    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription

    Molecular Signal Integration of Aging and Diabetes Mellitus

    Get PDF
    DM is considered as the cause of accelerated aging. Numerous biomedical studies have proved the key role of neuroimmune-endocrine interactions in the human body, which trigger the universal molecular pathways in the development of aging and DM (GH/IGF-1, Ras-MAPK, FOXO3A, sirtuin, mTOR, CETP, Timeless gene, TZAP pathways). Modern methods of proteomic and bioinformatic analysis allow us to investigate key genomic-proteomic interactions that underlie diabetic nephropathy (DN) in patients with type 2 DM. The study of the formation and development of DN can become the model for studying molecular pathways of aging of kidney tissue. Future biomedical research based on methods of high-throughput screening (HTS) of a pool of target molecules will lead to great advances in the diagnosis of aging stages and DM, as well as the development of methods for the prevention and therapy of accelerated aging of the human body and various violations of carbohydrate metabolism (1D-2D/MALDI-TOF-MS, HTS, biochips, biosensors)

    Genome-wide analysis of alternative splicing events in Hordeum vulgare: highlighting retention of intron-based splicing and its possible function through network analysis

    Get PDF
    In this study, using homology mapping of assembled expressed sequence tags against the genomic data, we identified alternative splicing events in barley. Results demonstrated that intron retention is frequently associated with specific abiotic stresses. Network analysis resulted in discovery of some specific sub-networks between miRNAs and transcription factors in genes with high number of alternative splicing, such as cross talk between SPL2, SPL10 and SPL11 regulated by miR156 and miR157 families. To confirm the alternative splicing events, elongation factor protein (MLOC_3412) was selected followed by experimental verification of the predicted splice variants by Semi quantitative Reverse Transcription PCR (qRT-PCR). Our novel integrative approach opens a new avenue for functional annotation of alternative splicing through regulatory-based network discovery.Bahman Panahi, Seyed Abolghasem Mohammadi, Reyhaneh Ebrahimi Khaksefidi, Jalil Fallah Mehrabadi, Esmaeil Ebrahimi

    Functional genomics with a comprehensive library of transposon mutants for the sulfate-reducing bacterium Desulfovibrio alaskensis G20.

    Get PDF
    UnlabelledThe genomes of sulfate-reducing bacteria remain poorly characterized, largely due to a paucity of experimental data and genetic tools. To meet this challenge, we generated an archived library of 15,477 mapped transposon insertion mutants in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. To demonstrate the utility of the individual mutants, we profiled gene expression in mutants of six regulatory genes and used these data, together with 1,313 high-confidence transcription start sites identified by tiling microarrays and transcriptome sequencing (5' RNA-Seq), to update the regulons of Fur and Rex and to confirm the predicted regulons of LysX, PhnF, PerR, and Dde_3000, a histidine kinase. In addition to enabling single mutant investigations, the D. alaskensis G20 transposon mutants also contain DNA bar codes, which enables the pooling and analysis of mutant fitness for thousands of strains simultaneously. Using two pools of mutants that represent insertions in 2,369 unique protein-coding genes, we demonstrate that the hypothetical gene Dde_3007 is required for methionine biosynthesis. Using comparative genomics, we propose that Dde_3007 performs a missing step in methionine biosynthesis by transferring a sulfur group to O-phosphohomoserine to form homocysteine. Additionally, we show that the entire choline utilization cluster is important for fitness in choline sulfate medium, which confirms that a functional microcompartment is required for choline oxidation. Finally, we demonstrate that Dde_3291, a MerR-like transcription factor, is a choline-dependent activator of the choline utilization cluster. Taken together, our data set and genetic resources provide a foundation for systems-level investigation of a poorly studied group of bacteria of environmental and industrial importance.ImportanceSulfate-reducing bacteria contribute to global nutrient cycles and are a nuisance for the petroleum industry. Despite their environmental and industrial significance, the genomes of sulfate-reducing bacteria remain poorly characterized. Here, we describe a genetic approach to fill gaps in our knowledge of sulfate-reducing bacteria. We generated a large collection of archived, transposon mutants in Desulfovibrio alaskensis G20 and used the phenotypes of these mutant strains to infer the function of genes involved in gene regulation, methionine biosynthesis, and choline utilization. Our findings and mutant resources will enable systematic investigations into gene function, energy generation, stress response, and metabolism for this important group of bacteria

    Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α

    Get PDF
    Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. © 2013 Adamik et al

    Genomics of Signaling Crosstalk of Estrogen Receptor α in Breast Cancer Cells

    Get PDF
    BACKGROUND: The estrogen receptor alpha (ERalpha) is a ligand-regulated transcription factor. However, a wide variety of other extracellular signals can activate ERalpha in the absence of estrogen. The impact of these alternate modes of activation on gene expression profiles has not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: We show that estrogen, growth factors and cAMP elicit surprisingly distinct ERalpha-dependent transcriptional responses in human MCF7 breast cancer cells. In response to growth factors and cAMP, ERalpha primarily activates and represses genes, respectively. The combined treatments with the anti-estrogen tamoxifen and cAMP or growth factors regulate yet other sets of genes. In many cases, tamoxifen is perverted to an agonist, potentially mimicking what is happening in certain tamoxifen-resistant breast tumors and emphasizing the importance of the cellular signaling environment. Using a computational analysis, we predicted that a Hox protein might be involved in mediating such combinatorial effects, and then confirmed it experimentally. Although both tamoxifen and cAMP block the proliferation of MCF7 cells, their combined application stimulates it, and this can be blocked with a dominant-negative Hox mutant. CONCLUSIONS/SIGNIFICANCE: The activating signal dictates both target gene selection and regulation by ERalpha, and this has consequences on global gene expression patterns that may be relevant to understanding the progression of ERalpha-dependent carcinomas

    Gene regulation during stress response transcription in Saccharomyces Cerevisiae

    Get PDF
    DYNAMIC TRANSCRIPTOME ANALYSIS MEASURES RATES OF MRNA SYNTHESIS AND DECAY IN YEAST To obtain rates of mRNA synthesis and decay in yeast, we established dynamic transcriptome analysis (DTA). DTA combines non-perturbing metabolic RNA labeling with dynamic kinetic modeling. DTA reveals that most mRNA synthesis rates are around several transcripts per cell and cell cycle, and most mRNA half-lives range around a median of 11 min. DTA can monitor the cellular response to osmotic stress with higher sensitivity and temporal resolution than standard transcriptomics. In contrast to monotonically increasing total mRNA levels, DTA reveals three phases of the stress response. During the initial shock phase, mRNA synthesis and decay rates decrease globally, resulting in mRNA storage. During the subsequent induction phase, both rates increase for a subset of genes, resulting in production and rapid removal of stress-responsive mRNAs. During the recovery phase, decay rates are largely restored, whereas synthesis rates remain altered, apparently enabling growth at high salt concentration. Stress-induced changes in mRNA synthesis rates are predicted from gene occupancy with RNA polymerase II. Thus, DTA realistically monitors the dynamics in mRNA metabolism that underlie gene regulatory systems.MEDIATOR PHOSPHORYLATION PREVENTS STRESS RESPONSE TRANSCRIPTION DURING NON STRESS CONDITIONS The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an endpoint of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast S. cerevisiae is phosphorylated at multiple sites a 17 out of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells
    corecore