92,597 research outputs found

    A document-like software visualization method for effective cognition of c-based software systems

    Get PDF
    It is clear that maintenance is a crucial and very costly process in a software life cycle. Nowadays there are a lot of software systems particularly legacy systems that are always maintained from time to time as new requirements arise. One important source to understand a software system before it is being maintained is through the documentation, particularly system documentation. Unfortunately, not all software systems developed or maintained are accompanied with their reliable and updated documents. In this case, source codes will be the only reliable source for programmers. A number of studies have been carried out in order to assist cognition based on source codes. One way is through tool automation via reverse engineering technique in which source codes will be parsed and the information extracted will be visualized using certain visualization methods. Most software visualization methods use graph as the main element to represent extracted software artifacts. Nevertheless, current methods tend to produce more complicated graphs and do not grant an explicit, document-like re-documentation environment. Hence, this thesis proposes a document-like software visualization method called DocLike Modularized Graph (DMG). The method is realized in a prototype tool named DocLike Viewer that targets on C-based software systems. The main contribution of the DMG method is to provide an explicit structural re-document mechanism in the software visualization tool. Besides, the DMG method provides more level of information abstractions via less complex graph that include inter-module dependencies, inter-program dependencies, procedural abstraction and also parameter passing. The DMG method was empirically evaluated based on the Goal/Question/Metric (GQM) paradigm and the findings depict that the method can improve productivity and quality in the aspect of cognition or program comprehension. A usability study was also conducted and DocLike Viewer had the most positive responses from the software practitioners

    Clear Visual Separation of Temporal Event Sequences

    Full text link
    Extracting and visualizing informative insights from temporal event sequences becomes increasingly difficult when data volume and variety increase. Besides dealing with high event type cardinality and many distinct sequences, it can be difficult to tell whether it is appropriate to combine multiple events into one or utilize additional information about event attributes. Existing approaches often make use of frequent sequential patterns extracted from the dataset, however, these patterns are limited in terms of interpretability and utility. In addition, it is difficult to assess the role of absolute and relative time when using pattern mining techniques. In this paper, we present methods that addresses these challenges by automatically learning composite events which enables better aggregation of multiple event sequences. By leveraging event sequence outcomes, we present appropriate linked visualizations that allow domain experts to identify critical flows, to assess validity and to understand the role of time. Furthermore, we explore information gain and visual complexity metrics to identify the most relevant visual patterns. We compare composite event learning with two approaches for extracting event patterns using real world company event data from an ongoing project with the Danish Business Authority.Comment: In Proceedings of the 3rd IEEE Symposium on Visualization in Data Science (VDS), 201

    Information Preserving Component Analysis: Data Projections for Flow Cytometry Analysis

    Full text link
    Flow cytometry is often used to characterize the malignant cells in leukemia and lymphoma patients, traced to the level of the individual cell. Typically, flow cytometric data analysis is performed through a series of 2-dimensional projections onto the axes of the data set. Through the years, clinicians have determined combinations of different fluorescent markers which generate relatively known expression patterns for specific subtypes of leukemia and lymphoma -- cancers of the hematopoietic system. By only viewing a series of 2-dimensional projections, the high-dimensional nature of the data is rarely exploited. In this paper we present a means of determining a low-dimensional projection which maintains the high-dimensional relationships (i.e. information) between differing oncological data sets. By using machine learning techniques, we allow clinicians to visualize data in a low dimension defined by a linear combination of all of the available markers, rather than just 2 at a time. This provides an aid in diagnosing similar forms of cancer, as well as a means for variable selection in exploratory flow cytometric research. We refer to our method as Information Preserving Component Analysis (IPCA).Comment: 26 page
    • …
    corecore