259 research outputs found

    Collaborative Work Enabled by Immersive Environments

    Get PDF

    Taking real steps in virtual nature: a randomized blinded trial

    Get PDF
    Studies show that green exercise (i.e., physical activity in the presence of nature) can provide the synergistic psychophysiological benefits of both physical exercise and nature exposure. The present study aimed to investigate the extent to which virtual green exercise may extend these benefits to people that are unable to engage in active visits to natural environments, as well as to promote enhanced exercise behavior. After watching a video validated to elicit sadness, participants either performed a treadmill walk while exposed to one of two virtual conditions, which were created using different techniques (360° video or 3D model), or walked on a treadmill while facing a blank wall (control). Quantitative and qualitative data were collected in relation to three overarching themes: “Experience,” “Physical engagement” and “Psychophysiological recovery.” Compared to control, greater enjoyment was found in the 3D model, while lower walking speed was found in the 360° video. No significant differences among conditions were found with respect to heart rate, perceived exertion, or changes in blood pressure and affect. The analysis of qualitative data provided further understanding on the participants’ perceptions and experiences. These findings indicate that 3D model-based virtual green exercise can provide some additional benefits compared to indoor exercise, while 360° video-based virtual green exercise may result in lower physical engagement.publishedVersio

    Freehand-Steering Locomotion Techniques for Immersive Virtual Environments: A Comparative Evaluation

    Get PDF
    Virtual reality has achieved significant popularity in recent years, and allowing users to move freely within an immersive virtual world has become an important factor critical to realize. The user’s interactions are generally designed to increase the perceived realism, but the locomotion techniques and how these affect the user’s task performance still represent an open issue, much discussed in the literature. In this article, we evaluate the efficiency and effectiveness of, and user preferences relating to, freehand locomotion techniques designed for an immersive virtual environment performed through hand gestures tracked by a sensor placed in the egocentric position and experienced through a head-mounted display. Three freehand locomotion techniques have been implemented and compared with each other, and with a baseline technique based on a controller, through qualitative and quantitative measures. An extensive user study conducted with 60 subjects shows that the proposed methods have a performance comparable to the use of the controller, further revealing the users’ preference for decoupling the locomotion in sub-tasks, even if this means renouncing precision and adapting the interaction to the possibilities of the tracker sensor

    Virtual reality for the assessment of everyday cognitive functions in older adults: an evaluation of the virtual reality action test and two interaction devices in a 91-year-old woman

    Get PDF
    Performance-based functional tests for the evaluation of daily living activities demonstrate strong psychometric properties and solve many of the limitations associated with self- and informant-report questionnaires. Virtual reality (VR) technology, which has gained interest as an effective medium for administering interventions in the context of healthcare, has the potential to minimize the time-demands associated with the administration and scoring of performance-based assessments. To date, efforts to develop VR systems for assessment of everyday function in older adults generally have relied on non-immersive systems. The aim of the present study was to evaluate the feasibility of an immersive VR environment for the assessment of everyday function in older adults. We present a detailed case report of an elderly woman who performed an everyday activity in an immersive VR context (Virtual Reality Action Test) with two different types of interaction devices (controller vs. sensor). VR performance was compared to performance of the same task with real objects outside of the VR system (Real Action Test). Comparisons were made on several dimensions, including (1) quality of task performance (e.g., order of task steps, errors, use and speed of hand movements); (2) subjective impression (e.g., attitudes), and (3) physiological markers of stress. Subjective impressions of performance with the different controllers also were compared for presence, cybersickness, and usability. Results showed that the participant was capable of using controllers and sensors to manipulate objects in a purposeful and goal-directed manner in the immersive VR paradigm. She performed the everyday task similarly across all conditions. She reported no cybersickness and even indicated that interactions in the VR environment were pleasant and relaxing. Thus, immersive VR is a feasible approach for function assessment even with older adults who might have very limited computer experience, no prior VR exposure, average educational experiences, and mild cognitive difficulties. Because of inherent limitations of single case reports (e.g., unknown generalizability, potential practice effects, etc.), group studies are needed to establish the full psychometric properties of the Virtual Reality Action Test

    The Effect of Prior Virtual Reality Experience on Locomotion and Navigation in Virtual Environments

    Get PDF
    VirtualReality(VR) is becoming more accessible and widely utilized in crucial disciplines like training, communication, healthcare, and education. One of the important parts of VR applications is walking through virtual environments. So, researchers have broadly studied various kinds of walking in VR as it can reduce sickness, improve the sense of presence, and enhance the general user experience. Due to the recent availability of consumer Head Mounted Displays (HMDs), people are using HMDs in all sorts of different locations. It underscores the need for locomotion methods that allow users to move through large Immersive Virtual Environments (IVEs) when occupying a small physical space or even seated. Although many aspects of locomotion in VR have received extensive research, very little work has considered how locomotive behaviors might change over time as users become more experienced in IVEs. As HMDs were rarely encountered outside of a lab before 2016, most locomotion research before this was likely conducted with VR novices who had no prior experience with the technology. However, as this is no longer the case, itis important to consider whether locomotive behaviors may evolve over time with user experience. This proposal specifically studies locomotive behaviors and effects that may adjust over time. For the first study, we conducted experiments measuring novice and experienced subjects’ gait parameters in VR and real environments. Prior research has established that users’ gait in virtual and real environments differs; however, little research has evaluated how users’ gait differs as users gain more experience with VR. We conducted experiments measuring novice and experienced subjects’ gait parameters in VR and real environments. Results showed that subjects’ performance in VR and Real World was more similar in the last trials than in the first trials; their walking dissimilarity in the start trials diminished by walking more trials. We found the trials a significant variable affecting the walking speed, step length, and trunk angle for both groups of users. While the main effect of expertise was not observed, an interaction effect between expertise and the trial number was shown. The trunk angle increased over time for novices but decreased for experts. These cond study reports the results of an experiment investigating how users’ behavior with two locomotion methods changed over four weeks: teleportation and joystick-based locomotion. Twenty novice VR users (no more than 1 hour prior experience with any form of walking in VR) were recruited. They loaned an Oculus Quest for four weeks on their own time, including an activity we provided them with. Results showed that the time required to complete the navigation task decreased faster for joystick-based locomotion. Spatial memory improved with time, particularly when using teleportation (which starts disadvantaged to joystick-based locomotion). Also, overall cyber sickness decreased slightly overtime; two dimensions of cyber sickness (nausea and disorientation) increased notably over time using joystick-based navigation. The next study presents the findings of a longitudinal research study investigating the effects of locomotion methods within virtual reality on participants’ spatial awareness during VR experiences and subsequent real-world gait parameters. The study encompasses two distinct environments: the real world and VR. In the real world setting, we analyze key gait parameters, including walking speed, distance traveled, and stepcount, both pre and post-VR exposure, to perceive the influence of VR locomotion on post-VR gait behavior. Additionally, we assess participants’ spatial awareness and the occurrence of simulator sickness, considering two locomotion methods: joy stick and teleportation. Our results reveal significant changes in gait parameters associated with increased VR locomotion experience. Furthermore, we observe a remarkable reduction in cyber sickness symptoms over successive VR sessions, particularly evident among participants utilizing joy stick locomotion. This study contributes to the understanding of gait behavior influenced by VR locomotion technology and the duration of VR immersion. Together, these studies inform how locomotion and navigation behavior may change in VR as users become more accustomed to walking in virtual reality settings. Also, comparative studies on locomotion methods help VR developers to implement the better-suited locomotion method. Thus, it provides knowledge to design and develop VR systems to perform better for different applications and groups of users
    • …
    corecore