15,501 research outputs found

    Benchmarking of localization solutions : guidelines for the selection of evaluation points

    Get PDF
    Indoor localization solutions are key enablers for next-generation indoor navigation and track and tracing solutions. As a result, an increasing number of different localization algorithms have been proposed and evaluated in scientific literature. However, many of these publications do not accurately substantiate the used evaluation methods. In particular, many authors utilize a different number of evaluation points, but they do not (i) analyze if the number of used evaluation points is sufficient to accurately evaluate the performance of their solutions and (ii) report on the uncertainty of the published results. To remedy this, this paper evaluates the influence of the selection of evaluation points. Based on statistical parameters such as the standard error of the mean value, an estimator is defined that can be used to quantitatively analyze the impact of the number of used evaluation points on the confidence interval of the mean value of the obtained results. This estimator is used to estimate the uncertainty of the presented accuracy results, and can be used to identify if more evaluations are required. To validate the proposed estimator, two different localization algorithms are evaluated in different testbeds and using different types of technology, showing that the number of required evaluation points does indeed vary significantly depending on the evaluated solution. (C) 2017 Elsevier B.V. All rights reserved

    Design and realization of precise indoor localization mechanism for Wi-Fi devices

    Get PDF
    Despite the abundant literature in the field, there is still the need to find a time-efficient, highly accurate, easy to deploy and robust localization algorithm for real use. The algorithm only involves minimal human intervention. We propose an enhanced Received Signal Strength Indicator (RSSI) based positioning algorithm for Wi-Fi capable devices, called the Dynamic Weighted Evolution for Location Tracking (DWELT). Due to the multiple phenomena affecting the propagation of radio signals, RSSI measurements show fluctuations that hinder the utilization of straightforward positioning mechanisms from widely known propagation loss models. Instead, DWELT uses data processing of raw RSSI values and applies a weighted posterior-probabilistic evolution for quick convergence of localization and tracking. In this paper, we present the first implementation of DWELT, intended for 1D location (applicable to tunnels or corridors), and the first step towards a more generic implementation. Simulations and experiments show an accuracy of 1m in more than 81% of the cases, and less than 2m in the 95%.Peer ReviewedPostprint (published version

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    • …
    corecore