31,382 research outputs found

    Person Re-Identification by Deep Joint Learning of Multi-Loss Classification

    Full text link
    Existing person re-identification (re-id) methods rely mostly on either localised or global feature representation alone. This ignores their joint benefit and mutual complementary effects. In this work, we show the advantages of jointly learning local and global features in a Convolutional Neural Network (CNN) by aiming to discover correlated local and global features in different context. Specifically, we formulate a method for joint learning of local and global feature selection losses designed to optimise person re-id when using only generic matching metrics such as the L2 distance. We design a novel CNN architecture for Jointly Learning Multi-Loss (JLML) of local and global discriminative feature optimisation subject concurrently to the same re-id labelled information. Extensive comparative evaluations demonstrate the advantages of this new JLML model for person re-id over a wide range of state-of-the-art re-id methods on five benchmarks (VIPeR, GRID, CUHK01, CUHK03, Market-1501).Comment: Accepted by IJCAI 201

    Sketch-a-Net that Beats Humans

    Full text link
    We propose a multi-scale multi-channel deep neural network framework that, for the first time, yields sketch recognition performance surpassing that of humans. Our superior performance is a result of explicitly embedding the unique characteristics of sketches in our model: (i) a network architecture designed for sketch rather than natural photo statistics, (ii) a multi-channel generalisation that encodes sequential ordering in the sketching process, and (iii) a multi-scale network ensemble with joint Bayesian fusion that accounts for the different levels of abstraction exhibited in free-hand sketches. We show that state-of-the-art deep networks specifically engineered for photos of natural objects fail to perform well on sketch recognition, regardless whether they are trained using photo or sketch. Our network on the other hand not only delivers the best performance on the largest human sketch dataset to date, but also is small in size making efficient training possible using just CPUs.Comment: Accepted to BMVC 2015 (oral

    Picasso, Matisse, or a Fake? Automated Analysis of Drawings at the Stroke Level for Attribution and Authentication

    Full text link
    This paper proposes a computational approach for analysis of strokes in line drawings by artists. We aim at developing an AI methodology that facilitates attribution of drawings of unknown authors in a way that is not easy to be deceived by forged art. The methodology used is based on quantifying the characteristics of individual strokes in drawings. We propose a novel algorithm for segmenting individual strokes. We designed and compared different hand-crafted and learned features for the task of quantifying stroke characteristics. We also propose and compare different classification methods at the drawing level. We experimented with a dataset of 300 digitized drawings with over 80 thousands strokes. The collection mainly consisted of drawings of Pablo Picasso, Henry Matisse, and Egon Schiele, besides a small number of representative works of other artists. The experiments shows that the proposed methodology can classify individual strokes with accuracy 70%-90%, and aggregate over drawings with accuracy above 80%, while being robust to be deceived by fakes (with accuracy 100% for detecting fakes in most settings)

    SCNet: Learning Semantic Correspondence

    Get PDF
    This paper addresses the problem of establishing semantic correspondences between images depicting different instances of the same object or scene category. Previous approaches focus on either combining a spatial regularizer with hand-crafted features, or learning a correspondence model for appearance only. We propose instead a convolutional neural network architecture, called SCNet, for learning a geometrically plausible model for semantic correspondence. SCNet uses region proposals as matching primitives, and explicitly incorporates geometric consistency in its loss function. It is trained on image pairs obtained from the PASCAL VOC 2007 keypoint dataset, and a comparative evaluation on several standard benchmarks demonstrates that the proposed approach substantially outperforms both recent deep learning architectures and previous methods based on hand-crafted features.Comment: ICCV 201
    corecore