3,149 research outputs found

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author

    Inferring cellular networks – a review

    Get PDF
    In this review we give an overview of computational and statistical methods to reconstruct cellular networks. Although this area of research is vast and fast developing, we show that most currently used methods can be organized by a few key concepts. The first part of the review deals with conditional independence models including Gaussian graphical models and Bayesian networks. The second part discusses probabilistic and graph-based methods for data from experimental interventions and perturbations

    Optimizing the cloud data center availability empowered by surrogate models

    Get PDF
    Making data centers highly available remains a challenge that must be considered since the design phase. The problem is selecting the right strategies and components for achieving this goal given a limited investment. Furthermore, data center designers currently lack reliable specialized tools to accomplish this task. In this paper, we disclose a formal method that chooses the components and strategies that optimize the availability of a data center while considering a given budget as a constraint. For that, we make use of stochastic models to represent a cloud data center infrastructure based on the TIA-942 standard. In order to improve the computational cost incurred to solve this optimization problem, we employ surrogate models to handle the complexity of the stochastic models. In this work, we use a Gaussian process to produce a surrogate model for a cloud data center infrastructure and we use three derivative-free optimization algorithms to explore the search space and to find optimal solutions. From the results, we observe that the Differential Evolution (DE) algorithm outperforms the other tested algorithms, since it achieves higher availability with a fair usage of the budget

    A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques

    Get PDF
    A growing trend for information technology is to not just react to changes, but anticipate them as much as possible. This paradigm made modern solutions, such as recommendation systems, a ubiquitous presence in today's digital transactions. Anticipatory networking extends the idea to communication technologies by studying patterns and periodicity in human behavior and network dynamics to optimize network performance. This survey collects and analyzes recent papers leveraging context information to forecast the evolution of network conditions and, in turn, to improve network performance. In particular, we identify the main prediction and optimization tools adopted in this body of work and link them with objectives and constraints of the typical applications and scenarios. Finally, we consider open challenges and research directions to make anticipatory networking part of next generation networks

    NLP Driven Models for Automatically Generating Survey Articles for Scientific Topics.

    Full text link
    This thesis presents new methods that use natural language processing (NLP) driven models for summarizing research in scientific fields. Given a topic query in the form of a text string, we present methods for finding research articles relevant to the topic as well as summarization algorithms that use lexical and discourse information present in the text of these articles to generate coherent and readable extractive summaries of past research on the topic. In addition to summarizing prior research, good survey articles should also forecast future trends. With this motivation, we present work on forecasting future impact of scientific publications using NLP driven features.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113407/1/rahuljha_1.pd

    Probabilistic modelling of oil rig drilling operations for business decision support: a real world application of Bayesian networks and computational intelligence.

    Get PDF
    This work investigates the use of evolved Bayesian networks learning algorithms based on computational intelligence meta-heuristic algorithms. These algorithms are applied to a new domain provided by the exclusive data, available to this project from an industry partnership with ODS-Petrodata, a business intelligence company in Aberdeen, Scotland. This research proposes statistical models that serve as a foundation for building a novel operational tool for forecasting the performance of rig drilling operations. A prototype for a tool able to forecast the future performance of a drilling operation is created using the obtained data, the statistical model and the experts' domain knowledge. This work makes the following contributions: applying K2GA and Bayesian networks to a real-world industry problem; developing a well-performing and adaptive solution to forecast oil drilling rig performance; using the knowledge of industry experts to guide the creation of competitive models; creating models able to forecast oil drilling rig performance consistently with nearly 80% forecast accuracy, using either logistic regression or Bayesian network learning using genetic algorithms; introducing the node juxtaposition analysis graph, which allows the visualisation of the frequency of nodes links appearing in a set of orderings, thereby providing new insights when analysing node ordering landscapes; exploring the correlation factors between model score and model predictive accuracy, and showing that the model score does not correlate with the predictive accuracy of the model; exploring a method for feature selection using multiple algorithms and drastically reducing the modelling time by multiple factors; proposing new fixed structure Bayesian network learning algorithms for node ordering search-space exploration. Finally, this work proposes real-world applications for the models based on current industry needs, such as recommender systems, an oil drilling rig selection tool, a user-ready rig performance forecasting software and rig scheduling tools

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Empiricism and stochastics in cellular automaton modeling of urban land use dynamics

    Get PDF
    An increasing number of models for predicting land use change in regions of rapidurbanization are being proposed and built using ideas from cellular automata (CA)theory. Calibrating such models to real situations is highly problematic and to date,serious attention has not been focused on the estimation problem. In this paper, wepropose a structure for simulating urban change based on estimating land usetransitions using elementary probabilistic methods which draw their inspiration fromBayes' theory and the related ?weights of evidence? approach. These land use changeprobabilities drive a CA model ? DINAMICA ? conceived at the Center for RemoteSensing of the Federal University of Minas Gerais (CSR-UFMG). This is based on aneight cell Moore neighborhood approach implemented through empirical land useallocation algorithms. The model framework has been applied to a medium-size townin the west of São Paulo State, Bauru. We show how various socio-economic andinfrastructural factors can be combined using the weights of evidence approach whichenables us to predict the probability of changes between land use types in differentcells of the system. Different predictions for the town during the period 1979-1988were generated, and statistical validation was then conducted using a multipleresolution fitting procedure. These modeling experiments support the essential logicof adopting Bayesian empirical methods which synthesize various information aboutspatial infrastructure as the driver of urban land use change. This indicates therelevance of the approach for generating forecasts of growth for Brazilian citiesparticularly and for world-wide cities in general
    corecore