1,399 research outputs found

    Cross-repository aggregation of educational resources

    Get PDF
    The proliferation of educational resource repositories promoted the development of aggregators to facilitate interoperability, that is, a unified access that would allow users to fetch a given resource independently of its origin. The CROERA system is a repository aggregator that provides access to educational resources independently of the classification taxonomy utilized in the hosting repository. For that, an automated classification algorithm is trained using the information extracted from the metadata of a collection of educational resources hosted in different repositories, which in turn depends on the classification taxonomy used in each case. Then, every resource will be automatically classified on demand independently of the original classification scheme. As a consequence, resources can be retrieved independently of the original taxonomy utilized using any taxonomy supported by the aggregator, and exploratory searches can be made without a previous taxonomy mapping. This approach overcomes one of the recurring problems in taxonomy mapping, namely the one-to-none matching situation. To evaluate the performance of this proposal two methods were applied. Resource classification in categories existing in all repositories was automatically evaluated, obtaining maximum performance values of 84% (F1 score), 87.8% (area under the receiver operator characteristic curve), 86% (area under the precision-recall curve) and 75.1% (Cohen's κ). In the case of resources not belonging to one of the common categories, human inspection was used as a reference to compute classification performance. In this case, maximum performance values obtained were respectively 69.8%, 73.8%, 75% and 54.3%. These results demonstrate the potential of this approach as a tool to facilitate resource classification, for example to provide a preliminary classification that would require just minor corrections from human classifiers.Xunta de Galicia | Ref. R2014/034 (RedPlir)Xunta de Galicia | Ref. R2014/029 (TELGalicia

    A machine learning taxonomic classifier for science publications

    Get PDF
    Dissertação de mestrado integrado em Engineering and Management of Information SystemsThe evolution in scientific production, associated with the growing interdomain collaboration of knowledge and the increasing co-authorship of scientific works remains supported by processes of manual, highly subjective classification, subject to misinterpretation. The very taxonomy on which this same classification process is based is not consensual, with governmental organizations resorting to taxonomies that do not keep up with changes in scientific areas, and indexers / repositories that seek to keep up with those changes. We find a reality distinct from what is expected and that the domains where scientific work is recorded can easily be misrepresentative of the work itself. The taxonomy applied today by governmental bodies, such as the one that regulates scientific production in Portugal, is not enough, is limiting, and promotes classification in areas close to the desired, therefore with great potential for error. An automatic classification process based on machine learning algorithms presents itself as a possible solution to the subjectivity problem in classification, and while it does not solve the issue of taxonomy mismatch this work shows this possibility with proved results. In this work, we propose a classification taxonomy, as well as we develop a process based on machine learning algorithms to solve the classification problem. We also present a set of directions for future work for an increasingly representative classification of evolution in science, which is not intended as airtight, but flexible and perhaps increasingly based on phenomena and not just disciplines.A evolução na produção de ciência, associada à crescente colaboração interdomínios do conhecimento e à também crescente coautoria de trabalhos permanece suportada por processos de classificação manual, subjetiva e sujeita a interpretações erradas. A própria taxonomia na qual assenta esse mesmo processo de classificação não é consensual, com organismos estatais a recorrerem a taxonomias que não acompanham as alterações nas áreas científicas, e indexadores/repositórios que procuram acompanhar essas mesmas alterações. Verificamos uma realidade distinta do espectável e que os domínios onde são registados os trabalhos científicos podem facilmente estar desenquadrados. A taxonomia hoje aplicada pelos organismos governamentais, como o caso do organismo que regulamenta a produção científica em Portugal, não é suficiente, é limitadora, e promove a classificação em domínios aproximados do desejado, logo com grande potencial para erro. Um processo de classificação automática com base em algoritmos de machine learning apresenta-se como uma possível solução para o problema da subjetividade na classificação, e embora não resolva a questão do desenquadramento da taxonomia utilizada, é apresentada neste trabalho como uma possibilidade comprovada. Neste trabalho propomos uma taxonomia de classificação, bem como nós desenvolvemos um processo baseado em machine learning algoritmos para resolver o problema de classificação. Apresentamos ainda um conjunto de direções para trabalhos futuros para uma classificação cada vez mais representativa da evolução nas ciências, que não pretende ser hermética, mas flexível e talvez cada vez mais baseada em fenómenos e não apenas em disciplinas

    Applying Wikipedia to Interactive Information Retrieval

    Get PDF
    There are many opportunities to improve the interactivity of information retrieval systems beyond the ubiquitous search box. One idea is to use knowledge bases—e.g. controlled vocabularies, classification schemes, thesauri and ontologies—to organize, describe and navigate the information space. These resources are popular in libraries and specialist collections, but have proven too expensive and narrow to be applied to everyday webscale search. Wikipedia has the potential to bring structured knowledge into more widespread use. This online, collaboratively generated encyclopaedia is one of the largest and most consulted reference works in existence. It is broader, deeper and more agile than the knowledge bases put forward to assist retrieval in the past. Rendering this resource machine-readable is a challenging task that has captured the interest of many researchers. Many see it as a key step required to break the knowledge acquisition bottleneck that crippled previous efforts. This thesis claims that the roadblock can be sidestepped: Wikipedia can be applied effectively to open-domain information retrieval with minimal natural language processing or information extraction. The key is to focus on gathering and applying human-readable rather than machine-readable knowledge. To demonstrate this claim, the thesis tackles three separate problems: extracting knowledge from Wikipedia; connecting it to textual documents; and applying it to the retrieval process. First, we demonstrate that a large thesaurus-like structure can be obtained directly from Wikipedia, and that accurate measures of semantic relatedness can be efficiently mined from it. Second, we show that Wikipedia provides the necessary features and training data for existing data mining techniques to accurately detect and disambiguate topics when they are mentioned in plain text. Third, we provide two systems and user studies that demonstrate the utility of the Wikipedia-derived knowledge base for interactive information retrieval
    corecore