8 research outputs found

    TFET-Based power management circuit for RF energy harvesting

    Get PDF
    This paper proposes a Tunnel FET (TFET)-based power management circuit (PMC) for ultra-low power RF energy harvesting applications. In contrast with conventional thermionic devices, the band-to-band tunneling mechanism of TFETs allows a better switching performance at sub-0.2 V operation. As a result, improved efficiencies in RF-powered circuits are achieved, thanks to increased rectification performance at low power levels and to the reduced energy required for a proper PMC operation. It is shown by simulations that heterojunction TFET devices designed with III-V materials can improve the rectification process at received power levels below -20 dBm (915 MHz) when compared to the application of homojunction III-V TFETs and Si FinFETs. For an available power of -25 dBm, the proposed converter is able to deliver 1.1 µW of average power (with 0.5 V) to the output load with a boost efficiency of 86%.Postprint (author's final draft

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Energy efficient core designs for upcoming process technologies

    Get PDF
    Energy efficiency has been a first order constraint in the design of micro processors for the last decade. As Moore's law sunsets, new technologies are being actively explored to extend the march in increasing the computational power and efficiency. It is essential for computer architects to understand the opportunities and challenges in utilizing the upcoming process technology trends in order to design the most efficient processors. In this work, we consider three process technology trends and propose core designs that are best suited for each of the technologies. The process technologies are expected to be viable over a span of timelines. We first consider the most popular method currently available to improve the energy efficiency, i.e. by lowering the operating voltage. We make key observations regarding the limiting factors in scaling down the operating voltage for general purpose high performance processors. Later, we propose our novel core design, ScalCore, one that can work in high performance mode at nominal Vdd, and in a very energy-efficient mode at low Vdd. The resulting core design can operate at much lower voltages providing higher parallel performance while consuming lower energy. While lowering Vdd improves the energy efficiency, CMOS devices are fundamentally limited in their low voltage operation. Therefore, we next consider an upcoming device technology -- Tunneling Field-Effect Transistors (TFETs), that is expected to supplement CMOS device technology in the near future. TFETs can attain much higher energy efficiency than CMOS at low voltages. However, their performance saturates at high voltages and, therefore, cannot entirely replace CMOS when high performance is needed. Ideally, we desire a core that is as energy-efficient as TFET and provides as much performance as CMOS. To reach this goal, we characterize the TFET device behavior for core design and judiciously integrate TFET units, CMOS units in a single core. The resulting core, called HetCore, can provide very high energy efficiency while limiting the slowdown when compared to a CMOS core. Finally, we analyze Monolithic 3D (M3D) integration technology that is widely considered to be the only way to integrate more transistors on a chip. We present the first analysis of the architectural implications of using M3D for core design and show how to partition the core across different layers. We also address one of the key challenges in realizing the technology, namely, the top layer performance degradation. We propose a critical path based partitioning for logic stages and asymmetric bit/port partitioning for storage stages. The result is a core that performs nearly as well as a core without any top layer slowdown. When compared to a 2D baseline design, an M3D core not only provides much higher performance, it also reduces the energy consumption at the same time. In summary, this thesis addresses one of the fundamental challenges in computer architecture -- overcoming the fact that CMOS is not scaling anymore. As we increase the computing power on a single chip, our ability to power the entire chip keeps decreasing. This thesis proposes three solutions aimed at solving this problem over different timelines. Across all our solutions, we improve energy efficiency without compromising the performance of the core. As a result, we are able to operate twice as many cores with in the same power budget as regular cores, significantly alleviating the problem of dark silicon

    Multiple-Independent-Gate Field-Effect Transistors for High Computational Density and Low Power Consumption

    Get PDF
    Transistors are the fundamental elements in Integrated Circuits (IC). The development of transistors significantly improves the circuit performance. Numerous technology innovations have been adopted to maintain the continuous scaling down of transistors. With all these innovations and efforts, the transistor size is approaching the natural limitations of materials in the near future. The circuits are expected to compute in a more efficient way. From this perspective, new device concepts are desirable to exploit additional functionality. On the other hand, with the continuously increased device density on the chips, reducing the power consumption has become a key concern in IC design. To overcome the limitations of Complementary Metal-Oxide-Semiconductor (CMOS) technology in computing efficiency and power reduction, this thesis introduces the multiple- independent-gate Field-Effect Transistors (FETs) with silicon nanowires and FinFET structures. The device not only has the capability of polarity control, but also provides dual-threshold- voltage and steep-subthreshold-slope operations for power reduction in circuit design. By independently modulating the Schottky junctions between metallic source/drain and semiconductor channel, the dual-threshold-voltage characteristics with controllable polarity are achieved in a single device. This property is demonstrated in both experiments and simulations. Thanks to the compact implementation of logic functions, circuit-level benchmarking shows promising performance with a configurable dual-threshold-voltage physical design, which is suitable for low-power applications. This thesis also experimentally demonstrates the steep-subthreshold-slope operation in the multiple-independent-gate FETs. Based on a positive feedback induced by weak impact ionization, the measured characteristics of the device achieve a steep subthreshold slope of 6 mV/dec over 5 decades of current. High Ion/Ioff ratio and low leakage current are also simultaneously obtained with a good reliability. Based on a physical analysis of the device operation, feasible improvements are suggested to further enhance the performance. A physics-based surface potential and drain current model is also derived for the polarity-controllable Silicon Nanowire FETs (SiNWFETs). By solving the carrier transport at Schottky junctions and in the channel, the core model captures the operation with independent gate control. It can serve as the core framework for developing a complete compact model by integrating advanced physical effects. To summarize, multiple-independent-gate SiNWFETs and FinFETs are extensively studied in terms of fabrication, modeling, and simulation. The proposed device concept expands the family of polarity-controllable FETs. In addition to the enhanced logic functionality, the polarity-controllable SiNWFETs and FinFETs with the dual-threshold-voltage and steep-subthreshold-slope operation can be promising candidates for future IC design towards low-power applications

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Multigate MOSFETs for digital performance and high linearity, and their fabrication techniques

    Get PDF
    The aggressive downscaling of complementary metal–oxide–semiconductor (CMOS) technology is facing great challenges to overcome severe short-channel effects. Multigate MOSFETs are one of the most promising candidates for scaling beyond Si CMOS, due to better electrostatic control as compared to conventional planar MOSFETs. Conventional dry etching-induced surface damage is one of the main sources of performance degradation for multigate transistors, especially for III-V high mobility materials. It is also challenging to increase the fin aspect ratio by dry etching because of the non-ideal anisotropic etching profile. Here, we report a novel method, inverse metal-assisted chemical etching (i-MacEtch), in lieu of conventional RIE etching, for 3D fin channel formation. InP junctionless FinFETs with record high-aspect-ratio (~ 50:1) fins are demonstrated by this method for the first time. The i-MacEtch process flow eliminates dry-etching-induced plasma damage, high energy ion implantation damage, and high temperature annealing, allowing for the fabrication of InP fin channels with atomically smooth sidewalls. The sidewall features resulting from this unique and simplified process ensure high interface quality between high-k dielectric layer and InP fin channel. Experimental and theoretical analyses show that high-aspect-ratio FinFETs, which could deliver more current per area under much relaxed horizontal geometry requirements, are promising in pushing the technology node ahead where conventional scaling has met its physical limits. The performance of the FinFET was further investigated through numerical simulation. A new kind of FinFET with asymmetric gate and source/drain contacts has been proposed and simulated. By benchmarking with conventional symmetric FinFET, better short-channel behavior with much higher current density is confirmed. The design guidelines are provided. The overall circuit delay can be minimized by optimizing gate lengths according to different local parasites among circuits in interconnection-delay-dominated SoC applications. Continued transistor scaling requires even stronger gate electrostatic control over the channel. The ultimate scaling structure would be gate-all-around nanowire MOSFETs. We demonstrate III-V junctionless gate-all-around (GAA) nanowire (NW) MOSFETs for the first time. For the first time, source/drain (S/D) resistance and thermal budget are minimized by regrowth using metalorganic chemical vapor deposition (MOCVD) in III-V MOSFETs. The fabricated short-channel (Lg=80 nm) GaAs GAA NWFETs with extremely narrow nanowire width (WNW= 9 nm) show excellent transconductance (gm) linearity at biases (300 mV), characterized by the high third intercept point (2.6 dBm). The high linearity is especially important for low power applications because it is insensitive to bias conditions
    corecore