147 research outputs found

    Actors: The Ideal Abstraction for Programming Kernel-Based Concurrency

    Get PDF
    GPU and multicore hardware architectures are commonly used in many different application areas to accelerate problem solutions relative to single CPU architectures. The typical approach to accessing these hardware architectures requires embedding logic into the programming language used to construct the application; the two primary forms of embedding are: calls to API routines to access the concurrent functionality, or pragmas providing concurrency hints to a language compiler such that particular blocks of code are targeted to the concurrent functionality. The former approach is verbose and semantically bankrupt, while the success of the latter approach is restricted to simple, static uses of the functionality. Actor-based applications are constructed from independent, encapsulated actors that interact through strongly-typed channels. This paper presents a first attempt at using actors to program kernels targeted at such concurrent hardware. Besides the glove-like fit of a kernel to the actor abstraction, quantitative code analysis shows that actor-based kernels are always significantly simpler than API-based coding, and generally simpler than pragma-based coding. Additionally, performance measurements show that the overheads of actor-based kernels are commensurate to API-based kernels, and range from equivalent to vastly improved for pragma-based annotations, both for sample and real-world applications

    Optimizing the Performance of Directive-based Programming Model for GPGPUs

    Get PDF
    Accelerators have been deployed on most major HPC systems. They are considered to improve the performance of many applications. Accelerators such as GPUs have an immense potential in terms of high compute capacity but programming these devices is a challenge. OpenCL, CUDA and other vendor-specific models for accelerator programming definitely offer high performance, but these are low-level models that demand excellent programming skills; moreover, they are time consuming to write and debug. In order to simplify GPU programming, several directive-based programming models have been proposed, including HMPP, PGI accelerator model and OpenACC. OpenACC has now become established as the de facto standard. We evaluate and compare these models involving several scientific applications. To study the implementation challenges and the principles and techniques of directive- based models, we built an open source OpenACC compiler on top of a main stream compiler framework (OpenUH as a branch of Open64). In this dissertation, we present the required techniques to parallelize and optimize the applications ported with OpenACC programming model. We apply both user-level optimizations in the applications and compiler and runtime-driven optimizations. The compiler optimization focuses on the parallelization of reduction operations inside nested parallel loops. To fully utilize all GPU resources, we also extend the OpenACC model to support multiple GPUs in a single node. Our application porting experience also revealed the challenge of choosing good loop schedules. The default loop schedule chosen by the compiler may not produce the best performance, so the user has to manually try different loop schedules to improve the performance. To solve this issue, we developed a locality-aware auto-tuning framework which is based on the proposed memory access cost model to help the compiler choose optimal loop schedules and guide the user to choose appropriate loop schedules.Computer Science, Department o

    TRACO: Source-to-Source Parallelizing Compiler

    Get PDF
    The paper presents a source-to-source compiler, TRACO, for automatic extraction of both coarse- and fine-grained parallelism available in C/C++ loops. Parallelization techniques implemented in TRACO are based on the transitive closure of a relation describing all the dependences in a loop. Coarse- and fine-grained parallelism is represented with synchronization-free slices (space partitions) and a legal loop statement instance schedule (time partitions), respectively. TRACO enables also applying scalar and array variable privatization as well as parallel reduction. On its output, TRACO produces compilable parallel OpenMP C/C++ and/or OpenACC C/C++ code. The effectiveness of TRACO, efficiency of parallel code produced by TRACO, and the time of parallel code production are evaluated by means of the NAS Parallel Benchmark and Polyhedral Benchmark suites. These features of TRACO are compared with closely related compilers such as ICC, Pluto, Par4All, and Cetus. Feature work is outlined

    Performance and portability of accelerated lattice Boltzmann applications with OpenACC

    Get PDF
    An increasingly large number of HPC systems rely on heterogeneous architectures combining traditional multi-core CPUs with power efficient accelerators. Designing efficient applications for these systems have been troublesome in the past as accelerators could usually be programmed using specific programming languages threatening maintainability, portability, and correctness. Several new programming environments try to tackle this problem. Among them, OpenACC offers a high-level approach based on compiler directives to mark regions of existing C, C++, or Fortran codes to run on accelerators. This approach directly addresses code portability, leaving to compilers the support of each different accelerator, but one has to carefully assess the relative costs of portable approaches versus computing efficiency. In this paper, we address precisely this issue, using as a test-bench a massively parallel lattice Boltzmann algorithm. We first describe our multi-node implementation and optimization of the algorithm, using OpenACC and MPI. We then benchmark the code on a variety of processors, including traditional CPUs and GPUs, and make accurate performance comparisons with other GPU implementations of the same algorithm using CUDA and OpenCL. We also asses the performance impact associated with portable programming, and the actual portability and performance-portability of OpenACC-based applications across several state-of-the-art architectures
    • …
    corecore