805 research outputs found

    A mobile agent and message ferry mechanism based routing for delay tolerant network

    Get PDF
    Delay Tolerant Network (DTN) is a class of networks characterized by long delays, frequent disconnections and partitioning of communication paths between network nodes. Due to the frequent disconnection and network partitioning, the overall performance of the network will be deteriorated sharply. The problem is how to make the network fairly connected to optimize data routing and enhance the performance of a network. The aim of this study is to improve the performance of DTN by minimizing end-to-end delivery time and increasing message delivery ratio. Therefore, this research tackles the problem of intermittent connectivity and network partitioning by introducing Agents and Ferry Mechanism based Routing (AFMR). The AFMR comprises of two stages by applying two schemes: mobile agents and ferry mechanism. The agents' scheme is proposed to deal with intermittent connectivity and network partitioning by collecting the basic information about network connection such as signal strength, nodes position in the network and distance to the destination nodes to minimize end-to-end delivery time. The second stage is to increase the message delivery ratio by moving the nodes towards the path with available network connectivity based on agents' feedback. The AFMR is evaluated through simulations and the results are compared with those of Epidemic, PRoPHET and Message Ferry (MF). The findings demonstrate that AFMR is superior to all three, with respect to the average end-to-end delivery time, message delivery ratio, network load and message drop ratio, which are regarded as extremely important metrics for the evaluation of DTN routing protocols. The AFMR achieves improved network performance in terms of end-to-end delivery time (56.3%); enhanced message delivery ratio (60.0%); mitigation of message drop (63.5%) and reduced network load (26.1 %). The contributions of this thesis are to enhance the performance of DTN by significantly overcoming the intermittent connectivity and network partitioning problems in the network

    Solar-Terrestrial Science Strategy Workshop

    Get PDF
    The conclusions and recommendations reached at the Solar Terrestrial Science Strategy Workshop are summarized. The charter given to this diverse group was: (1) to establish the level of scientific understanding to be accomplished with the completion of the current and near term worldwide programs; (2) identify the significant scientific questions to be answered by future solar terrestrial programs, and the programs required to answer these questions; and (3) map out a program strategy, taking into consideration currently perceived space capabilities and constraints, to accomplish the identified program

    A Roadmap Toward a Unified Space Communication Architecture

    Get PDF
    In recent years, the number of space exploration missions has multiplied. Such an increase raises the question of effective communication between the multitude of human-made objects spread across our solar system. An efficient and scalable communication architecture presents multiple challenges, including the distance between planetary entities, their motion and potential obstruction, the limited available payload on satellites, and the high mission cost. This paper brings together recent relevant specifications, standards, mission demonstrations, and the most recent proposals to develop a unified architecture for deep-space internetworked communication. After characterizing the transmission medium and its unique challenges, we explore the available communication technologies and frameworks to establish a reliable communication architecture across the solar system. We then draw an evolutive roadmap for establishing a scalable communication architecture. This roadmap builds upon the mission-centric communication architectures in the upcoming years towards a fully interconnected network or InterPlanetary Internet (IPN). We finally discuss the tools available to develop such an architecture in the short, medium, and long terms. The resulting architecture cross-supports space agencies on the solar system-scale while significantly decreasing space communication costs. Through this analysis, we derive the critical research questions remaining for creating the IPN regarding the considerable challenges of space communication.Peer reviewe

    A preliminary study of the Soviet civil space program. Volume 1: Organization and Operations

    Get PDF
    The organization, planning, and personnel is focused of Soviet space, advantage is taken of glasnost and improved foreign relations to explore a hitherto obscure subject. The way in which the civil space program obtains approval and funding is altered. Missions must be approved before the Supreme Soviet, and public opinion is beginning to play a greater role in the legislature's budget decision. The Soviet civil space program remains a collection of disparate elements, not unified by any national, centralized space agency. An attempt was made to catalog and delineate the relationships between the components proves helpful. There is little or no coordination of independent associations' efforts, and the planning process relied on previously to set priorities and allocate resources appears to be currently inoperative or in a state of flux. The civil space program is moving in new directions: toward budget tautness, more international interactions, an emphasis on civilian over military applications, commercialization, and fiscal accountability. This study is a snapshot of a dynamic subject, but hopefully on which has highlighted the critical elements to track

    Future Opportunities for Space Flight Experiments

    Get PDF
    I\u27m going to try to be as realistic as I can in addressing the topic which I\u27ve been asked to discuss. These are difficult times for the space program but I\u27m convinced that the nation will want us to be ready to move forward once the nations\u27 resources can be diverted from the Viet Nam situation. Three important areas in which we undoubtedly should be prepared to move forward are applications, astronomy, and life sciences. There are other areas but I\u27ll restrict myself to those today

    The Use of the Blackboard Archiecture for a Decision making System for the Control of Craft with various Actuator and Movement Capabilities

    Get PDF
    This paper provides an overview of an approach to the control of multiple craft with heterogeneous movement and actuation characteristics that is based on the Blackboard software architecture. An overview of the Blackboard architecture is provided. Then, the operational and mission requirements that dictate the need for autonomous control are characterized and the utility of the Blackboard architecture is for meeting these requirements is discussed. The performance of a best-path solver and naïve solver are compared. The results demonstrate that the best-path solver outperforms the naïve solver in the amount of time taken to generate a solution, however, the number of solver-runs to be executed against the Blackboard must be sufficient to allow the lower individual-run times to offset the time required to propagate the data utilized by the best-path solver for solution generation through the database. The existence of other justifications for this approach (even if the number of runs for each data propagation cycle is not sufficient) is also discussed

    Resource considerate data routing through satellite networks

    Get PDF
    In many envisaged satellite-based networks, such as constellations or federations, there often exists a desire to reduce data latency, increase delivered data volume, or simply exploit unused resources. A strategy is presented that achieves efficient routing of data, in a store-carry-forward fashion, through satellite networks that exhibit delay- and disruption-tolerant network characteristics. This network-layer protocol, termed Spae, exploits information about the schedule of future contacts between network nodes, because satellite motion is deterministic, along with the capacity of these contacts to route data in such a way as to avoid significant overcommitment of data along a resource limited journey. Results from simulations of a federated satellite system indicate consistent benefit in terms of network performance over other, less-sophisticated, conventional methods, and comparable performance to a packet-optimal, full-knowledge approach

    Solar Orbiter: Exploring the Sun-heliosphere connection

    Get PDF
    The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015-2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.Comment: 52 pages, 21 figures, 125 references; accepted for publication in Solar Physic

    Deep learning-based approach for detecting trajectory modifications of cassini-huygens spacecraft

    Get PDF
    There were necessary trajectory modifications of Cassini spacecraft during its last 14 years movement cycle of the interplanetary research project. In the scale 1.3 hour of signal propagation time and 1.4-billion-kilometer size of Earth-Cassini channel, complex event detection in the orbit modifications requires special investigation and analysis of the collected big data. The technologies for space exploration warrant a high standard of nuanced and detailed research. The Cassini mission has accumulated quite huge volumes of science records. This generated a curiosity derives mainly from a need to use machine learning to analyze deep space missions. For energy saving considerations, the communication between the Earth and Cassini was executed in non-periodic mode. This paper provides a sophisticated in-depth learning approach for detecting Cassini spacecraft trajectory modifications in post-processing mode. The proposed model utilizes the ability of Long Short Term Memory (LSTM) neural networks for drawing out useful data and learning the time series inner data pattern, along with the forcefulness of LSTM layers for distinguishing dependencies among the long-short term. Our research study exploited the statistical rates, Matthews correlation coefficient, and F1 score to evaluate our models. We carried out multiple tests and evaluated the provided approach against several advanced models. The preparatory analysis showed that exploiting the LSTM layer provides a notable boost in rising the detection process performance. The proposed model achieved a number of 232 trajectory modification detections with 99.98% accuracy among the last 13.35 years of the Cassini spacecraft life. © 2013 IEEE
    • …
    corecore