7,041 research outputs found

    Evolving a rule system controller for automatic driving in a car racing competition

    Get PDF
    IEEE Symposium on Computational Intelligence and Games. Perth, Australia, 15-18 December 2008.The techniques and the technologies supporting Automatic Vehicle Guidance are important issues. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the car safety, reduction in emission or fuel consumption or optimization of driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. For this work we have designed an automatic controller that learns rules with a genetic algorithm. This paper is a report of the results obtained by this controller during the car racing competition held in Hong Kong during the IEEE World Congress on Computational Intelligence (WCCI 2008).Publicad

    Limit cycle behavior of smart fluid dampers under closed loop control

    Get PDF
    Semiactive vibration dampers offer an attractive compromise between the simplicity and fail safety of passive devices, and the weight, cost, and complexity of fully active systems. In addition, the dissipative nature of semiactive dampers ensures they always remain stable under closed loop control, unlike their fully active counterparts, However undesirable limit cycle behavior remains a possibility, which is not always property considered during the controller design. Smart fluids provide an elegant means to produce semiactive damping, since their resistance to flow can be directly controlled by the application of an electric or magnetic field. However the nonlinear behavior of smart fluid dampers makes it difficult to design effective controllers, and so a wide variety of control strategies has been proposed in the literature. In general, this work has overlooked the possibility of undesirable limit cycle behavior under closed loop conditions. The aim of the present study is to demonstrate how the experimentally observed limit cycle behavior of smart dampers can be predicted and explained by appropriate nonlinear models. The study is based upon a previously developed feedback control strategy, but the techniques described are relevant to other forms of smart damper control

    Synthesis and control of generalised dynamically substructured systems

    Get PDF

    Hardware-in-the-loop Testing of On-Off Controllers in Semi-Active Suspension Systems

    No full text
    International audienceThis paper presents an experimental validation of a proposed Frequency Estimation-Based (FEB) controller for semi-active suspensions by using a Hardware-in-the-Loop (HiL) platform of a Quarter of Vehicle (QoV) model. The FEB approach is compared with three commercial On-Off controllers that have shown good results in comfort and road holding: Sky-Hook (SH), Groud-Hook (GH) and Mix-1-sensor (M1S). The comparison was done under the same experimental tests; the standards ISO-2631 and BS-6841 are used to evaluate the comfort and the Root Mean Square (RMS) index to quantify the road holding. The QoV model belongs to a front-left corner of a pick-up truck; the used experimental Magneto-Rheological (MR) damper is not symmetric and only hast 2 manipulation states. Experimental results show that the FEB controller has the best comfort performance at low frequencies (outperforms the benchmark controllers at 11.2%); while, for road holding, the improvement is slight; however, FEB controller works better for both goals simultaneously. By analyzing the suspension deflection, the FEB controller reduces up to 32.8% of motion respect to the GH controller. Additionally, the manipulation of the SH and GH controllers have several changes of actuation that do not allow the stabilization of the force in its desirable value; while FEB controller has a soft actuation defined on bandwidths

    Optimisation of Internal Model Control Performance Indices for Autonomous Vehicle Suspension

    Get PDF
    Autonomous vehicles (AVs) have grown in popularity and acceptability due to their unique capacity to reduce pollution, road accidents, human error, and traffic congestion. Vehicle suspension is an important component of a car chassis since it affects the performance of vehicle dynamics. As a result, enhancing suspension performance and stability is critical in order to achieve a more pleasant and safer car. Although there are several suspension control methods, they all suffer from fixed gain characteristics that are prone to nonlinearities, disturbances, and the inability to be tuned online. This research provides a comparison of Internal Model Control (IMC) performance metrics for vehicle suspension control. The IMC approach was tuned using the Genetic Algorithm and the Particle Swarm Optimisation algorithms. The performance of each of these schemes was analysed and compared in order to determine the approach with the best performance in terms of AV suspension control. The performance of the system response was compared to that of the traditional IMC. According to the comparison analysis, the optimized IMC systems had lower IAE, ITAE, ISE, rising time, and settling time values than the traditional IMC. Furthermore, there were no overshoots in any of the controllers

    State of the art of control schemes for smart systems featuring magneto-rheological materials

    Get PDF
    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials

    Comparing PID and H-infinity controllers on a 2-DoF nonlinear quarter car suspension system

    Get PDF
    Automotive suspension system is an important part of car comfort and safety. In this article active suspension for 2DOF nonlinear coupled Passenger-Car model with force actuator is designed using PID control and H-infinity control. This paper is focused on comparison of those two controllers. Simulations on an exact nonlinear model of the suspension are performed for control validation

    Design of a denoising hybrid fuzzy-pid controller for active suspension systems of heavy vehicles based on model adaptive wheelbase preview strategy

    Get PDF
    Active suspension is an effective approach to improve vehicle performance, and it is of great importance to attenuate the vibration of the rear part of heavy vehicles with freight. This paper proposes a new hybrid fuzzy proportional-integral-derivative (PID) controller with model adaptive wheelbase preview and wavelet denoising filter in an active suspension system for heavy vehicles with freight. A half vehicle model is first built, followed with the construction of the road excitation profiles of the shock and vibration pavement. After the design and implementation of the control method, four performance indices of the vehicle are evaluated. To verify the effectiveness of the proposed method, the control performance of the integrated controller and the separate function of every single controller are evaluated respectively. Numerical results show that the integrated control algorithm is superior to the single controllers and is effective in improving the vehicle performance as compared with other methods. Moreover, the wavelet denoising filter is shown to be an effective way to improve the vehicle performance and enable the stability of the system against noise

    Study and Analysis of Anti Vibratory Passive and Active Methods Applied to Complex Mechanical System

    Get PDF
    This paper studies problematic of a mechanical system composed of different coupled parts submitted to a high speed shock and proposes analysis of anti vibratory passive and active methods based on an experimental and theoretical coupled approach. After a shock, different parts of the system oscillate. If one of them is excited at a particular frequency, such as its proper frequency, important oscillations appear and can lead to the deterioration of the system by introducing important stresses. In this paper, we propose an analysis in order to understand this kind of problem and what we can do to avoid it. Firstly, we discuss problematic and we expose the studied system. In a second time, we develop two approaches of modeling that allow us to understand the phenomenon by carrying out numerical simulations. Then cross checking of model is completed via experimental study on drop test bench. Passive minimization method of vibrations based on experimental and theoretical coupled approach is exposed. Finally, a comparative analysis of different methods of control and experimental results of controlled system are presented

    Vibration isolation with smart fluid dampers: a benchmarking study

    Get PDF
    The non-linear behaviour of electrorheological (ER) and magnetorheological (MR) dampers makes it difficult to design effective control strategies, and as a consequence a wide range of control systems have been proposed in the literature. These previous studies have not always compared the performance to equivalent passive systems, alternative control designs, or idealised active systems. As a result it is often impossible to compare the performance of different smart damper control strategies. This article provides some insight into the relative performance of two MR damper control strategies: on/off control and feedback linearisation. The performance of both strategies is benchmarked against ideal passive, semi-active and fully active damping. The study relies upon a previously developed model of an MR damper, which in this work is validated experimentally under closed-loop conditions with a broadband mechanical excitation. Two vibration isolation case studies are investigated: a single-degree-of-freedom mass-isolator, and a two-degree-of-freedom system that represents a vehicle suspension system. In both cases, a variety of broadband mechanical excitations are used and the results analysed in the frequency domain. It is shown that although on/off control is more straightforward to implement, its performance is worse than the feedback linearisation strategy, and can be extremely sensitive to the excitation conditions
    • …
    corecore