1,323 research outputs found

    Comparative Analysis of Deterministic and Nondeterministic Decision Trees for Decision Tables from Closed Classes

    Full text link
    In this paper, we consider classes of decision tables with many-valued decisions closed under operations of removal of columns, changing of decisions, permutation of columns, and duplication of columns. We study relationships among three parameters of these tables: the complexity of a decision table (if we consider the depth of decision trees, then the complexity of a decision table is the number of columns in it), the minimum complexity of a deterministic decision tree, and the minimum complexity of a nondeterministic decision tree. We consider rough classification of functions characterizing relationships and enumerate all possible seven types of the relationships

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Evolution of interface binding strengths in simplified model of protein quaternary structure.

    Get PDF
    The self-assembly of proteins into protein quaternary structures is of fundamental importance to many biological processes, and protein misassembly is responsible for a wide range of proteopathic diseases. In recent years, abstract lattice models of protein self-assembly have been used to simulate the evolution and assembly of protein quaternary structure, and to provide a tractable way to study the genotype-phenotype map of such systems. Here we generalize these models by representing the interfaces as mutable binary strings. This simple change enables us to model the evolution of interface strengths, interface symmetry, and deterministic assembly pathways. Using the generalized model we are able to reproduce two important results established for real protein complexes: The first is that protein assembly pathways are under evolutionary selection to minimize misassembly. The second is that the assembly pathway of a complex mirrors its evolutionary history, and that both can be derived from the relative strengths of interfaces. These results demonstrate that the generalized lattice model offers a powerful new idealized framework to facilitate the study of protein self-assembly processes and their evolution

    Beyond Language Equivalence on Visibly Pushdown Automata

    Full text link
    We study (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds for a number of studied preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE-complete on visibly one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata and show that they can be decided in polynomial time.Comment: Final version of paper, accepted by LMC

    Bounds on Depth of Decision Trees Derived from Decision Rule Systems

    Full text link
    Systems of decision rules and decision trees are widely used as a means for knowledge representation, as classifiers, and as algorithms. They are among the most interpretable models for classifying and representing knowledge. The study of relationships between these two models is an important task of computer science. It is easy to transform a decision tree into a decision rule system. The inverse transformation is a more difficult task. In this paper, we study unimprovable upper and lower bounds on the minimum depth of decision trees derived from decision rule systems depending on the various parameters of these systems

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    In Memoriam, Solomon Marcus

    Get PDF
    This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him

    Reasoning about Regular Properties: A Comparative Study

    Full text link
    Several new algorithms for deciding emptiness of Boolean combinations of regular languages and of languages of alternating automata (AFA) have been proposed recently, especially in the context of analysing regular expressions and in string constraint solving. The new algorithms demonstrated a significant potential, but they have never been systematically compared, neither among each other nor with the state-of-the art implementations of existing (non)deterministic automata-based methods. In this paper, we provide the first such comparison as well as an overview of the existing algorithms and their implementations. We collect a diverse benchmark mostly originating in or related to practical problems from string constraint solving, analysing LTL properties, and regular model checking, and evaluate collected implementations on it. The results reveal the best tools and hint on what the best algorithms and implementation techniques are. Roughly, although some advanced algorithms are fast, such as antichain algorithms and reductions to IC3/PDR, they are not as overwhelmingly dominant as sometimes presented and there is no clear winner. The simplest NFA-based technology may be actually the best choice, depending on the problem source and implementation style. Our findings should be highly relevant for development of these techniques as well as for related fields such as string constraint solving
    corecore