384 research outputs found

    Deep learning analysis of eye fundus images to support medical diagnosis

    Get PDF
    Machine learning techniques have been successfully applied to support medical decision making of cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods have been used for early detection of abnormalities in the eye that could improve the diagnosis of different ocular diseases, especially in developing countries, where there are major limitations to access to specialized medical treatment. However, the early detection of clinical signs such as blood vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three main challenges: the ocular images can be affected by noise artifact, the features of the clinical signs depend specifically on the acquisition source, and the combination of local signs and grading disease label is not an easy task. This research approaches the problem of combining local signs and global labels of different acquisition sources of medical information as a valuable tool to support medical decision making in ocular diseases. Different models for different eye diseases were developed. Four models were developed using eye fundus images: for DME, it was designed a two-stages model that uses a shallow model to predict an exudate binary mask. Then, the binary mask is stacked with the raw fundus image into a 4-channel array as an input of a deep convolutional neural network for diabetic macular edema diagnosis; for glaucoma, it was developed three deep learning models. First, it was defined a deep learning model based on three-stages that contains an initial stage for automatically segment two binary masks containing optic disc and physiological cup segmentation, followed by an automatic morphometric features extraction stage from previous segmentations, and a final classification stage that supports the glaucoma diagnosis with intermediate medical information. Two late-data-fusion methods that fused morphometric features from cartesian and polar segmentation of the optic disc and physiological cup with features extracted from raw eye fundus images. On the other hand, two models were defined using optical coherence tomography. First, a customized convolutional neural network termed as OCT-NET to extract features from OCT volumes to classify DME, DR-DME and AMD conditions. In addition, this model generates images with highlighted local information about the clinical signs, and it estimates the number of slides inside a volume with local abnormalities. Finally, a 3D-Deep learning model that uses OCT volumes as an input to estimate the retinal thickness map useful to grade AMD. The methods were systematically evaluated using ten free public datasets. The methods were compared and validated against other state-of-the-art algorithms and the results were also qualitatively evaluated by ophthalmology experts from Fundación Oftalmológica Nacional. In addition, the proposed methods were tested as a diagnosis support tool of diabetic macular edema, glaucoma, diabetic retinopathy and age-related macular degeneration using two different ocular imaging representations. Thus, we consider that this research could be potentially a big step in building telemedicine tools that could support medical personnel for detecting ocular diseases using eye fundus images and optical coherence tomography.Las técnicas de aprendizaje automático se han aplicado con éxito para apoyar la toma de decisiones médicas sobre el cáncer, las enfermedades cardíacas y las enfermedades degenerativas del cerebro. En particular, se han utilizado métodos de aprendizaje profundo para la detección temprana de anormalidades en el ojo que podrían mejorar el diagnóstico de diferentes enfermedades oculares, especialmente en países en desarrollo, donde existen grandes limitaciones para acceder a tratamiento médico especializado. Sin embargo, la detección temprana de signos clínicos como vasos sanguíneos, alteraciones del disco óptico, exudados, hemorragias, drusas y microaneurismas presenta tres desafíos principales: las imágenes oculares pueden verse afectadas por artefactos de ruido, las características de los signos clínicos dependen específicamente de fuente de adquisición, y la combinación de signos locales y clasificación de la enfermedad no es una tarea fácil. Esta investigación aborda el problema de combinar signos locales y etiquetas globales de diferentes fuentes de adquisición de información médica como una herramienta valiosa para apoyar la toma de decisiones médicas en enfermedades oculares. Se desarrollaron diferentes modelos para diferentes enfermedades oculares. Se desarrollaron cuatro modelos utilizando imágenes de fondo de ojo: para DME, se diseñó un modelo de dos etapas que utiliza un modelo superficial para predecir una máscara binaria de exudados. Luego, la máscara binaria se apila con la imagen de fondo de ojo original en una matriz de 4 canales como entrada de una red neuronal convolucional profunda para el diagnóstico de edema macular diabético; para el glaucoma, se desarrollaron tres modelos de aprendizaje profundo. Primero, se definió un modelo de aprendizaje profundo basado en tres etapas que contiene una etapa inicial para segmentar automáticamente dos máscaras binarias que contienen disco óptico y segmentación fisiológica de la copa, seguido de una etapa de extracción de características morfométricas automáticas de segmentaciones anteriores y una etapa de clasificación final que respalda el diagnóstico de glaucoma con información médica intermedia. Dos métodos de fusión de datos tardíos que fusionaron características morfométricas de la segmentación cartesiana y polar del disco óptico y la copa fisiológica con características extraídas de imágenes de fondo de ojo crudo. Por otro lado, se definieron dos modelos mediante tomografía de coherencia óptica. Primero, una red neuronal convolucional personalizada denominada OCT-NET para extraer características de los volúmenes OCT para clasificar las condiciones DME, DR-DME y AMD. Además, este modelo genera imágenes con información local resaltada sobre los signos clínicos, y estima el número de diapositivas dentro de un volumen con anomalías locales. Finalmente, un modelo de aprendizaje 3D-Deep que utiliza volúmenes OCT como entrada para estimar el mapa de espesor retiniano útil para calificar AMD. Los métodos se evaluaron sistemáticamente utilizando diez conjuntos de datos públicos gratuitos. Los métodos se compararon y validaron con otros algoritmos de vanguardia y los resultados también fueron evaluados cualitativamente por expertos en oftalmología de la Fundación Oftalmológica Nacional. Además, los métodos propuestos se probaron como una herramienta de diagnóstico de edema macular diabético, glaucoma, retinopatía diabética y degeneración macular relacionada con la edad utilizando dos representaciones de imágenes oculares diferentes. Por lo tanto, consideramos que esta investigación podría ser potencialmente un gran paso en la construcción de herramientas de telemedicina que podrían ayudar al personal médico a detectar enfermedades oculares utilizando imágenes de fondo de ojo y tomografía de coherencia óptica.Doctorad

    Una revisión sistemática de métodos de aprendizaje profundo aplicados a imágenes oculares

    Get PDF
    Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosisLa inteligencia artificial está teniendo un importante impacto en diversas áreas de la medicina y a la oftalmología no ha sido la excepción. En particular, los métodos de aprendizaje profundo han sido aplicados con éxito en la detección de signos clínicos y la clasificación de enfermedades oculares. Esto representa un potencial impacto en el incremento de pacientes correctamente y oportunamente diagnosticados. En oftalmología, los métodos de aprendizaje profundo se han aplicado principalmente a imágenes de fondo de ojo y tomografía de coherencia óptica. Por un lado, estos métodos han logrado un rendimiento sobresaliente en la detección de enfermedades oculares tales como: retinopatía diabética, glaucoma, degeneración macular diabética y degeneración macular relacionada con la edad. Por otro lado, varios desafíos mundiales han compartido grandes conjuntos de datos con segmentación de parte de los ojos, signos clínicos y el diagnóstico ocular realizado por expertos. Adicionalmente, estos métodos están rompiendo el estigma de los modelos de caja negra, con la entrega de información clínica interpretable. Esta revisión proporciona una visión general de los métodos de aprendizaje profundo de última generación utilizados en imágenes oftálmicas, bases de datos y posibles desafíos para los diagnósticos oculare

    Retinal vessel segmentation using textons

    Get PDF
    Segmenting vessels from retinal images, like segmentation in many other medical image domains, is a challenging task, as there is no unified way that can be adopted to extract the vessels accurately. However, it is the most critical stage in automatic assessment of various forms of diseases (e.g. Glaucoma, Age-related macular degeneration, diabetic retinopathy and cardiovascular diseases etc.). Our research aims to investigate retinal image segmentation approaches based on textons as they provide a compact description of texture that can be learnt from a training set. This thesis presents a brief review of those diseases and also includes their current situations, future trends and techniques used for their automatic diagnosis in routine clinical applications. The importance of retinal vessel segmentation is particularly emphasized in such applications. An extensive review of previous work on retinal vessel segmentation and salient texture analysis methods is presented. Five automatic retinal vessel segmentation methods are proposed in this thesis. The first method focuses on addressing the problem of removing pathological anomalies (Drusen, exudates) for retinal vessel segmentation, which have been identified by other researchers as a problem and a common source of error. The results show that the modified method shows some improvement compared to a previously published method. The second novel supervised segmentation method employs textons. We propose a new filter bank (MR11) that includes bar detectors for vascular feature extraction and other kernels to detect edges and photometric variations in the image. The k-means clustering algorithm is adopted for texton generation based on the vessel and non-vessel elements which are identified by ground truth. The third improved supervised method is developed based on the second one, in which textons are generated by k-means clustering and texton maps representing vessels are derived by back projecting pixel clusters onto hand labelled ground truth. A further step is implemented to ensure that the best combinations of textons are represented in the map and subsequently used to identify vessels in the test set. The experimental results on two benchmark datasets show that our proposed method performs well compared to other published work and the results of human experts. A further test of our system on an independent set of optical fundus images verified its consistent performance. The statistical analysis on experimental results also reveals that it is possible to train unified textons for retinal vessel segmentation. In the fourth method a novel scheme using Gabor filter bank for vessel feature extraction is proposed. The ii method is inspired by the human visual system. Machine learning is used to optimize the Gabor filter parameters. The experimental results demonstrate that our method significantly enhances the true positive rate while maintaining a level of specificity that is comparable with other approaches. Finally, we proposed a new unsupervised texton based retinal vessel segmentation method using derivative of SIFT and multi-scale Gabor filers. The lack of sufficient quantities of hand labelled ground truth and the high level of variability in ground truth labels amongst experts provides the motivation for this approach. The evaluation results reveal that our unsupervised segmentation method is comparable with the best other supervised methods and other best state of the art methods

    Automatic analysis of retinal images to aid in the diagnosis and grading of diabetic retinopathy

    Get PDF
    Diabetic retinopathy (DR) is the most common complication of diabetes mellitus and one of the leading causes of preventable blindness in the adult working population. Visual loss can be prevented from the early stages of DR, when the treatments are effective. Therefore, early diagnosis is paramount. However, DR may be clinically asymptomatic until the advanced stage, when vision is already affected and treatment may become difficult. For this reason, diabetic patients should undergo regular eye examinations through screening programs. Traditionally, DR screening programs are run by trained specialists through visual inspection of the retinal images. However, this manual analysis is time consuming and expensive. With the increasing incidence of diabetes and the limited number of clinicians and sanitary resources, the early detection of DR becomes non-viable. For this reason, computed-aided diagnosis (CAD) systems are required to assist specialists for a fast, reliable diagnosis, allowing to reduce the workload and the associated costs. We hypothesize that the application of novel, automatic algorithms for fundus image analysis could contribute to the early diagnosis of DR. Consequently, the main objective of the present Doctoral Thesis is to study, design and develop novel methods based on the automatic analysis of fundus images to aid in the screening, diagnosis, and treatment of DR. In order to achieve the main goal, we built a private database and used five retinal public databases: DRIMDB, DIARETDB1, DRIVE, Messidor and Kaggle. The stages of fundus image processing covered in this Thesis are: retinal image quality assessment (RIQA), the location of the optic disc (OD) and the fovea, the segmentation of RLs and EXs, and the DR severity grading. RIQA was studied with two different approaches. The first approach was based on the combination of novel, global features. Results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity using the private database. We developed a second approach aimed at RIQA based on deep learning. We achieved 95.29% accuracy with the private database and 99.48% accuracy with the DRIMDB database. The location of the OD and the fovea was performed using a combination of saliency maps. The proposed methods were evaluated over the private database and the public databases DRIVE, DIARETDB1 and Messidor. For the OD, we achieved 100% accuracy for all databases except Messidor (99.50%). As for the fovea location, we also reached 100% accuracy for all databases except Messidor (99.67%). The joint segmentation of RLs and EXs was accomplished by decomposing the fundus image into layers. Results were computed per pixel and per image. Using the private database, 88.34% per-image accuracy (ACCi) was reached for the RL detection and 95.41% ACCi for EX detection. An additional method was proposed for the segmentation of RLs based on superpixels. Evaluating this method with the private database, we obtained 84.45% ACCi. Results were validated using the DIARETDB1 database. Finally, we proposed a deep learning framework for the automatic DR severity grading. The method was based on a novel attention mechanism which performs a separate attention of the dark and the bright structures of the retina. The Kaggle DR detection dataset was used for development and validation. The International Clinical DR Scale was considered, which is made up of 5 DR severity levels. Classification results for all classes achieved 83.70% accuracy and a Quadratic Weighted Kappa of 0.78. The methods proposed in this Doctoral Thesis form a complete, automatic DR screening system, contributing to aid in the early detection of DR. In this way, diabetic patients could receive better attention for their ocular health avoiding vision loss. In addition, the workload of specialists could be relieved while healthcare costs are reduced.La retinopatía diabética (RD) es la complicación más común de la diabetes mellitus y una de las principales causas de ceguera prevenible en la población activa adulta. El diagnóstico precoz es primordial para prevenir la pérdida visual. Sin embargo, la RD es clínicamente asintomática hasta etapas avanzadas, cuando la visión ya está afectada. Por eso, los pacientes diabéticos deben someterse a exámenes oftalmológicos periódicos a través de programas de cribado. Tradicionalmente, estos programas están a cargo de especialistas y se basan de la inspección visual de retinografías. Sin embargo, este análisis manual requiere mucho tiempo y es costoso. Con la creciente incidencia de la diabetes y la escasez de recursos sanitarios, la detección precoz de la RD se hace inviable. Por esta razón, se necesitan sistemas de diagnóstico asistido por ordenador (CAD) que ayuden a los especialistas a realizar un diagnóstico rápido y fiable, que permita reducir la carga de trabajo y los costes asociados. El objetivo principal de la presente Tesis Doctoral es estudiar, diseñar y desarrollar nuevos métodos basados en el análisis automático de retinografías para ayudar en el cribado, diagnóstico y tratamiento de la RD. Las etapas estudiadas fueron: la evaluación de la calidad de la imagen retiniana (RIQA), la localización del disco óptico (OD) y la fóvea, la segmentación de RL y EX y la graduación de la severidad de la RD. RIQA se estudió con dos enfoques diferentes. El primer enfoque se basó en la combinación de características globales. Los resultados lograron una precisión del 91,46% utilizando la base de datos privada. El segundo enfoque se basó en aprendizaje profundo. Logramos un 95,29% de precisión con la base de datos privada y un 99,48% con la base de datos DRIMDB. La localización del OD y la fóvea se realizó mediante una combinación de mapas de saliencia. Los métodos propuestos fueron evaluados sobre la base de datos privada y las bases de datos públicas DRIVE, DIARETDB1 y Messidor. Para el OD, logramos una precisión del 100% para todas las bases de datos excepto Messidor (99,50%). En cuanto a la ubicación de la fóvea, también alcanzamos un 100% de precisión para todas las bases de datos excepto Messidor (99,67%). La segmentación conjunta de RL y EX se logró descomponiendo la imagen del fondo de ojo en capas. Utilizando la base de datos privada, se alcanzó un 88,34% de precisión por imagen (ACCi) para la detección de RL y un 95,41% de ACCi para la detección de EX. Se propuso un método adicional para la segmentación de RL basado en superpíxeles. Evaluando este método con la base de datos privada, obtuvimos 84.45% ACCi. Los resultados se validaron utilizando la base de datos DIARETDB1. Finalmente, propusimos un método de aprendizaje profundo para la graduación automática de la gravedad de la DR. El método se basó en un mecanismo de atención. Se utilizó la base de datos Kaggle y la Escala Clínica Internacional de RD (5 niveles de severidad). Los resultados de clasificación para todas las clases alcanzaron una precisión del 83,70% y un Kappa ponderado cuadrático de 0,78. Los métodos propuestos en esta Tesis Doctoral forman un sistema completo y automático de cribado de RD, contribuyendo a ayudar en la detección precoz de la RD. De esta forma, los pacientes diabéticos podrían recibir una mejor atención para su salud ocular evitando la pérdida de visión. Además, se podría aliviar la carga de trabajo de los especialistas al mismo tiempo que se reducen los costes sanitarios.Escuela de DoctoradoDoctorado en Tecnologías de la Información y las Telecomunicacione

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisión del estado del arte sobre la segmentación de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown
    corecore