6,979 research outputs found

    Moduli Stabilization with Long Winding Strings

    Full text link
    Stabilizing all of the modulus fields coming from compactifications of string theory on internal manifolds is one of the outstanding challenges for string cosmology. Here, in a simple example of toroidal compactification, we study the dynamics of the moduli fields corresponding to the size and shape of the torus along with the ambient flux and long strings winding both internal directions. It is known that a string gas containing states with non-vanishing winding and momentum number in one internal direction can stabilize the radius of this internal circle to be at self-dual radius. We show that a gas of long strings winding all internal directions can stabilize all moduli, except the dilaton which is stabilized by hand, in this simple example.Comment: title changed, improved presentation; reference added. 18 pages, JHEP styl

    Mean-Field Optimal Control

    Full text link
    We introduce the concept of {\it mean-field optimal control} which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals {\it freely interacting} with each other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect, we address the situation where the individuals are actually influenced also by an external {\it policy maker}, and we propagate its effect for the number NN of individuals going to infinity. On the one hand, from a modeling point of view, we take into account also that the policy maker is constrained to act according to optimal strategies promoting its most parsimonious interaction with the group of individuals. This will be realized by considering cost functionals including L1L^1-norm terms penalizing a broadly distributed control of the group, while promoting its sparsity. On the other hand, from the analysis point of view, and for the sake of generality, we consider broader classes of convex control penalizations. In order to develop this new concept of limit rigorously, we need to carefully combine the classical concept of mean-field limit, connecting the finite dimensional system of ODE describing the dynamics of each individual of the group to the PDE describing the dynamics of the respective probability distribution, with the well-known concept of Γ\Gamma-convergence to show that optimal strategies for the finite dimensional problems converge to optimal strategies of the infinite dimensional problem.Comment: 31 page

    Finite dimensional attractor for a composite system of wave/plate equations with localised damping

    Full text link
    The long-term behaviour of solutions to a model for acoustic-structure interactions is addressed; the system is comprised of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are: existence of a global attractor for the dynamics generated by this composite system, as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension -- established in a previous work by Bucci, Chueshov and Lasiecka (Comm. Pure Appl. Anal., 2007) only in the presence of full interior acoustic damping -- holds even in the case of localised dissipation. This nontrivial generalization is inspired by and consistent with the recent advances in the study of wave equations with nonlinear localised damping.Comment: 40 pages, 1 figure; v2: added references for Section 1, submitte
    • …
    corecore