2,468 research outputs found

    On finitely recursive programs

    Full text link
    Disjunctive finitary programs are a class of logic programs admitting function symbols and hence infinite domains. They have very good computational properties, for example ground queries are decidable while in the general case the stable model semantics is highly undecidable. In this paper we prove that a larger class of programs, called finitely recursive programs, preserves most of the good properties of finitary programs under the stable model semantics, namely: (i) finitely recursive programs enjoy a compactness property; (ii) inconsistency checking and skeptical reasoning are semidecidable; (iii) skeptical resolution is complete for normal finitely recursive programs. Moreover, we show how to check inconsistency and answer skeptical queries using finite subsets of the ground program instantiation. We achieve this by extending the splitting sequence theorem by Lifschitz and Turner: We prove that if the input program P is finitely recursive, then the partial stable models determined by any smooth splitting omega-sequence converge to a stable model of P.Comment: 26 pages, Preliminary version in Proc. of ICLP 2007, Best paper awar

    Relating Multi-Adjoint Normal Logic Programs to Core Fuzzy Answer Set Programs from a Semantical Approach

    Get PDF
    This paper relates two interesting paradigms in fuzzy logic programming from a semantical approach: core fuzzy answer set programming and multi-adjoint normal logic programming. Specifically, it is shown how core fuzzy answer set programs can be translated into multi-adjoint normal logic programs and vice versa, preserving the semantics of the starting program. This translation allows us to combine the expressiveness of multi-adjoint normal logic programming with the compactness and simplicity of the core fuzzy answer set programming language. As a consequence, theoretical properties and results which relate the answer sets to the stable models of the respective logic programming frameworks are obtained. Among others, this study enables the application of the existence theorem of stable models developed for multi-adjoint normal logic programs to ensure the existence of answer sets in core fuzzy answer set programs

    Space Efficiency of Propositional Knowledge Representation Formalisms

    Full text link
    We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class

    Linear-Logic Based Analysis of Constraint Handling Rules with Disjunction

    Full text link
    Constraint Handling Rules (CHR) is a declarative committed-choice programming language with a strong relationship to linear logic. Its generalization CHR with Disjunction (CHRv) is a multi-paradigm declarative programming language that allows the embedding of horn programs. We analyse the assets and the limitations of the classical declarative semantics of CHR before we motivate and develop a linear-logic declarative semantics for CHR and CHRv. We show how to apply the linear-logic semantics to decide program properties and to prove operational equivalence of CHRv programs across the boundaries of language paradigms

    HoCHC: A Refutationally Complete and Semantically Invariant System of Higher-order Logic Modulo Theories

    Full text link
    We present a simple resolution proof system for higher-order constrained Horn clauses (HoCHC) - a system of higher-order logic modulo theories - and prove its soundness and refutational completeness w.r.t. the standard semantics. As corollaries, we obtain the compactness theorem and semi-decidability of HoCHC for semi-decidable background theories, and we prove that HoCHC satisfies a canonical model property. Moreover a variant of the well-known translation from higher-order to 1st-order logic is shown to be sound and complete for HoCHC in standard semantics. We illustrate how to transfer decidability results for (fragments of) 1st-order logic modulo theories to our higher-order setting, using as example the Bernays-Schonfinkel-Ramsey fragment of HoCHC modulo a restricted form of Linear Integer Arithmetic

    A view of canonical extension

    Get PDF
    This is a short survey illustrating some of the essential aspects of the theory of canonical extensions. In addition some topological results about canonical extensions of lattices with additional operations in finitely generated varieties are given. In particular, they are doubly algebraic lattices and their interval topologies agree with their double Scott topologies and make them Priestley topological algebras.Comment: 24 pages, 2 figures. Presented at the Eighth International Tbilisi Symposium on Language, Logic and Computation Bakuriani, Georgia, September 21-25 200

    Partial logics with two kinds of negation as a foundation for knowledge-based reasoning

    Get PDF
    We show how to use model classes of partial logic to define semantics of general knowledge-based reasoning. Its essential benefit is that partial logics allow us to distinguish two sorts of negative information: the absence of information and the explicit rejection or falsification of information. Another general advantage of partial logic, which we discuss in the first part, is that its meta-theory is very close to the meta-theory of classical logic. In the second part notions of minimal, paraminimal and stable models are presented in terms of partial logic and we show how the resulting definitions can be used to define the semantics of knowledge bases such as relational and deductive databases, and extended logic programs
    • …
    corecore