69 research outputs found

    The Construction of Nonseparable Wavelet Bi-Frames and Associated Approximation Schemes

    Get PDF
    Wavelet analysis and its fast algorithms are widely used in many fields of applied mathematics such as in signal and image processing. In the present thesis, we circumvent the restrictions of orthogonal and biorthogonal wavelet bases by constructing wavelet frames. They still allow for a stable decomposition, and so-called wavelet bi-frames provide a series expansion very similar to those of pairs of biorthogonal wavelet bases. Contrary to biorthogonal bases, primal and dual wavelets are no longer supposed to satisfy any geometrical conditions, and the frame setting allows for redundancy. This provides more flexibility in their construction. Finally, we construct families of optimal wavelet bi-frames in arbitrary dimensions with arbitrarily high smoothness. Then we verify that the n-term approximation can be described by Besov spaces and we apply the theoretical findings to image denoising

    Extreme Value Analysis of Empirical Frame Coefficients and Implications for Denoising by Soft-Thresholding

    Full text link
    Denoising by frame thresholding is one of the most basic and efficient methods for recovering a discrete signal or image from data that are corrupted by additive Gaussian white noise. The basic idea is to select a frame of analyzing elements that separates the data in few large coefficients due to the signal and many small coefficients mainly due to the noise \epsilon_n. Removing all data coefficients being in magnitude below a certain threshold yields a reconstruction of the original signal. In order to properly balance the amount of noise to be removed and the relevant signal features to be kept, a precise understanding of the statistical properties of thresholding is important. For that purpose we derive the asymptotic distribution of max_{\omega \in \Omega_n} || for a wide class of redundant frames (\phi_\omega^n: \omega \in \Omega_n}. Based on our theoretical results we give a rationale for universal extreme value thresholding techniques yielding asymptotically sharp confidence regions and smoothness estimates corresponding to prescribed significance levels. The results cover many frames used in imaging and signal recovery applications, such as redundant wavelet systems, curvelet frames, or unions of bases. We show that `generically' a standard Gumbel law results as it is known from the case of orthonormal wavelet bases. However, for specific highly redundant frames other limiting laws may occur. We indeed verify that the translation invariant wavelet transform shows a different asymptotic behaviour.Comment: [Content: 39 pages, 4 figures] Note that in this version 4 we have slightely changed the title of the paper and we have rewritten parts of the introduction. Except for corrected typos the other parts of the paper are the same as the original versions

    Recovering edges in ill-posed inverse problems: optimality of curvelet frames

    Get PDF
    We consider a model problem of recovering a function f(x1,x2)f(x_1,x_2) from noisy Radon data. The function ff to be recovered is assumed smooth apart from a discontinuity along a C2C^2 curve, that is, an edge. We use the continuum white-noise model, with noise level ε\varepsilon. Traditional linear methods for solving such inverse problems behave poorly in the presence of edges. Qualitatively, the reconstructions are blurred near the edges; quantitatively, they give in our model mean squared errors (MSEs) that tend to zero with noise level ε\varepsilon only as O(ε1/2)O(\varepsilon^{1/2}) as ε0\varepsilon\to 0. A recent innovation--nonlinear shrinkage in the wavelet domain--visually improves edge sharpness and improves MSE convergence to O(ε2/3)O(\varepsilon^{2/3}). However, as we show here, this rate is not optimal. In fact, essentially optimal performance is obtained by deploying the recently-introduced tight frames of curvelets in this setting. Curvelets are smooth, highly anisotropic elements ideally suited for detecting and synthesizing curved edges. To deploy them in the Radon setting, we construct a curvelet-based biorthogonal decomposition of the Radon operator and build "curvelet shrinkage" estimators based on thresholding of the noisy curvelet coefficients. In effect, the estimator detects edges at certain locations and orientations in the Radon domain and automatically synthesizes edges at corresponding locations and directions in the original domain. We prove that the curvelet shrinkage can be tuned so that the estimator will attain, within logarithmic factors, the MSE O(ε4/5)O(\varepsilon^{4/5}) as noise level ε0\varepsilon\to 0. This rate of convergence holds uniformly over a class of functions which are C2C^2 except for discontinuities along C2C^2 curves, and (except for log terms) is the minimax rate for that class. Our approach is an instance of a general strategy which should apply in other inverse problems; we sketch a deconvolution example

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    Multiresolution and wavelets

    Get PDF
    Wavelets may possibly provide a useful basis for the numerical solution of differential or integral equations, in particular when they model processes which operate on very different space- or time-scales (turbulence, boundary layers, shocks, for instance). Our aim in this report is to provide a self-contained introduction to the basic theory of multiresolution and wavelets, accessible to the numerical analyst who knows nothing of signal processing, quantum theory, or any of the other established fields of application

    The development of the quaternion wavelet transform

    Get PDF
    The purpose of this article is to review what has been written on what other authors have called quaternion wavelet transforms (QWTs): there is no consensus about what these should look like and what their properties should be. We briefly explain what real continuous and discrete wavelet transforms and multiresolution analysis are and why complex wavelet transforms were introduced; we then go on to detail published approaches to QWTs and to analyse them. We conclude with our own analysis of what it is that should define a QWT as being truly quaternionic and why all but a few of the “QWTs” we have described do not fit our definition

    Wavelet and its Applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multidimensional Wavelets and Computer Vision

    Get PDF
    This report deals with the construction and the mathematical analysis of multidimensional nonseparable wavelets and their efficient application in computer vision. In the first part, the fundamental principles and ideas of multidimensional wavelet filter design such as the question for the existence of good scaling matrices and sensible design criteria are presented and extended in various directions. Afterwards, the analytical properties of these wavelets are investigated in some detail. It will turn out that they are especially well-suited to represent (discretized) data as well as large classes of operators in a sparse form - a property that directly yields efficient numerical algorithms. The final part of this work is dedicated to the application of the developed methods to the typical computer vision problems of nonlinear image regularization and the computation of optical flow in image sequences. It is demonstrated how the wavelet framework leads to stable and reliable results for these problems of generally ill-posed nature. Furthermore, all the algorithms are of order O(n) leading to fast processing
    corecore