1,544 research outputs found

    Bell-shaped nonstationary refinable ripplets

    Get PDF
    We study the approximation properties of the class of nonstationary refinable ripplets introduced in \cite{GP08}. These functions are solution of an infinite set of nonstationary refinable equations and are defined through sequences of scaling masks that have an explicit expression. Moreover, they are variation-diminishing and highly localized in the scale-time plane, properties that make them particularly attractive in applications. Here, we prove that they enjoy Strang-Fix conditions and convolution and differentiation rules and that they are bell-shaped. Then, we construct the corresponding minimally supported nonstationary prewavelets and give an iterative algorithm to evaluate the prewavelet masks. Finally, we give a procedure to construct the associated nonstationary biorthogonal bases and filters to be used in efficient decomposition and reconstruction algorithms. As an example, we calculate the prewavelet masks and the nonstationary biorthogonal filter pairs corresponding to the C2C^2 nonstationary scaling functions in the class and construct the corresponding prewavelets and biorthogonal bases. A simple test showing their good performances in the analysis of a spike-like signal is also presented. Keywords: total positivity, variation-dimishing, refinable ripplet, bell-shaped function, nonstationary prewavelet, nonstationary biorthogonal basisComment: 30 pages, 10 figure

    Variational-Wavelet Approach to RMS Envelope Equations

    Full text link
    We present applications of variational-wavelet approach to nonlinear (rational) rms envelope equations. We have the solution as a multiresolution (multiscales) expansion in the base of compactly supported wavelet basis. We give extension of our results to the cases of periodic beam motion and arbitrary variable coefficients. Also we consider more flexible variational method which is based on biorthogonal wavelet approach.Comment: 21 pages, 8 figures, LaTeX2e, presented at Second ICFA Advanced Accelerator Workshop, UCLA, November, 199

    Convergence of the cascade algorithm at irregular scaling functions

    Full text link
    The spectral properties of the Ruelle transfer operator which arises from a given polynomial wavelet filter are related to the convergence question for the cascade algorithm for approximation of the corresponding wavelet scaling function.Comment: AMS-LaTeX; 38 pages, 10 figures comprising 42 EPS diagrams; some diagrams are bitmapped at 75 dots per inch; for full-resolution bitmaps see ftp://ftp.math.uiowa.edu/pub/jorgen/convcasc

    Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples

    Full text link
    In this paper, we consider the problem of recovering a compactly supported multivariate function from a collection of pointwise samples of its Fourier transform taken nonuniformly. We do this by using the concept of weighted Fourier frames. A seminal result of Beurling shows that sample points give rise to a classical Fourier frame provided they are relatively separated and of sufficient density. However, this result does not allow for arbitrary clustering of sample points, as is often the case in practice. Whilst keeping the density condition sharp and dimension independent, our first result removes the separation condition and shows that density alone suffices. However, this result does not lead to estimates for the frame bounds. A known result of Groechenig provides explicit estimates, but only subject to a density condition that deteriorates linearly with dimension. In our second result we improve these bounds by reducing the dimension dependence. In particular, we provide explicit frame bounds which are dimensionless for functions having compact support contained in a sphere. Next, we demonstrate how our two main results give new insight into a reconstruction algorithm---based on the existing generalized sampling framework---that allows for stable and quasi-optimal reconstruction in any particular basis from a finite collection of samples. Finally, we construct sufficiently dense sampling schemes that are often used in practice---jittered, radial and spiral sampling schemes---and provide several examples illustrating the effectiveness of our approach when tested on these schemes

    Some Smooth Compactly Supported Tight Wavelet Frames with Vanishing Moments

    Get PDF
    Let A∈Rd×d, d≄1 be a dilation matrix with integer entries and |detA|=2. We construct several families of compactly supported Parseval framelets associated to A having any desired number of vanishing moments. The first family has a single generator and its construction is based on refinable functions associated to Daubechies low pass filters and a theorem of Bownik. For the construction of the second family we adapt methods employed by Chui and He and Petukhov for dyadic dilations to any dilation matrix A. The third family of Parseval framelets has the additional property that we can find members of that family having any desired degree of regularity. The number of generators is 2d+d and its construction involves some compactly supported refinable functions, the Oblique Extension Principle and a slight generalization of a theorem of Lai and Stöckler. For the particular case d=2 and based on the previous construction, we present two families of compactly supported Parseval framelets with any desired number of vanishing moments and degree of regularity. None of these framelet families have been obtained by means of tensor products of lower-dimensional functions. One of the families has only two generators, whereas the other family has only three generators. Some of the generators associated with these constructions are even and therefore symmetric. All have even absolute values.The first author was partially supported by MEC/MICINN Grant #MTM2011-27998 (Spain)

    Coupling wavelets/vaguelets and smooth fictitious domain methods for elliptic problems: the univariate case

    No full text
    International audienceThis work is devoted to the definition, the analysis and the implementation in the univariate case of a new numerical method for the approximation of par-tial differential equations solutions defined on complex domains. It couples a smooth fictitious domain method of Haslinger et al. [Projected Schur com-plement method for solving non-symmetric systems arising from a smooth fictitious domain approach, Numer. Linear Algebra 14(2007) 713-739] with multiscale approximations. After the definition of the method, error esti-mates are derived: they allow to control a global error (on the whole domain including the boundary of the initial complex domain) as well as an interior error (for any sub-domain strictly included in the control domain). Nu-merical implementation and tests on univariate elliptic problems are finally described
    • 

    corecore