36 research outputs found

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739

    Flexible constrained sampling with guarantees for pattern mining

    Get PDF
    Pattern sampling has been proposed as a potential solution to the infamous pattern explosion. Instead of enumerating all patterns that satisfy the constraints, individual patterns are sampled proportional to a given quality measure. Several sampling algorithms have been proposed, but each of them has its limitations when it comes to 1) flexibility in terms of quality measures and constraints that can be used, and/or 2) guarantees with respect to sampling accuracy. We therefore present Flexics, the first flexible pattern sampler that supports a broad class of quality measures and constraints, while providing strong guarantees regarding sampling accuracy. To achieve this, we leverage the perspective on pattern mining as a constraint satisfaction problem and build upon the latest advances in sampling solutions in SAT as well as existing pattern mining algorithms. Furthermore, the proposed algorithm is applicable to a variety of pattern languages, which allows us to introduce and tackle the novel task of sampling sets of patterns. We introduce and empirically evaluate two variants of Flexics: 1) a generic variant that addresses the well-known itemset sampling task and the novel pattern set sampling task as well as a wide range of expressive constraints within these tasks, and 2) a specialized variant that exploits existing frequent itemset techniques to achieve substantial speed-ups. Experiments show that Flexics is both accurate and efficient, making it a useful tool for pattern-based data exploration.Comment: Accepted for publication in Data Mining & Knowledge Discovery journal (ECML/PKDD 2017 journal track

    Pattern Mining and Sense-Making Support for Enhancing the User Experience

    Get PDF
    While data mining techniques such as frequent itemset and sequence mining are well established as powerful pattern discovery tools in domains from science, medicine to business, a detriment is the lack of support for interactive exploration of high numbers of patterns generated with diverse parameter settings and the relationships among the mined patterns. To enhance the user experience, real-time query turnaround times and improved support for interactive mining are desired. There is also an increasing interest in applying data mining solutions for mobile data. Patterns mined over mobile data may enable context-aware applications ranging from automating frequently repeated tasks to providing personalized recommendations. Overall, this dissertation addresses three problems that limit the utility of data mining, namely, (a.) lack of interactive exploration tools for mined patterns, (b.) insufficient support for mining localized patterns, and (c.) high computational mining requirements prohibiting mining of patterns on smaller compute units such as a smartphone. This dissertation develops interactive frameworks for the guided exploration of mined patterns and their relationships. Contributions include the PARAS pre- processing and indexing framework; enabling analysts to gain key insights into rule relationships in a parameter space view due to the compact storage of rules that enables query-time reconstruction of complete rulesets. Contributions also include the visual rule exploration framework FIRE that presents an interactive dual view of the parameter space and the rule space, that together enable enhanced sense-making of rule relationships. This dissertation also supports the online mining of localized association rules computed on data subsets by selectively deploying alternative execution strategies that leverage multidimensional itemset-based data partitioning index. Finally, we designed OLAPH, an on-device context-aware service that learns phone usage patterns over mobile context data such as app usage, location, call and SMS logs to provide device intelligence. Concepts introduced for modeling mobile data as sequences include compressing context logs to intervaled context events, adding generalized time features, and identifying meaningful sequences via filter expressions

    CICLAD: A Fast and Memory-efficient Closed Itemset Miner for Streams

    Full text link
    Mining association rules from data streams is a challenging task due to the (typically) limited resources available vs. the large size of the result. Frequent closed itemsets (FCI) enable an efficient first step, yet current FCI stream miners are not optimal on resource consumption, e.g. they store a large number of extra itemsets at an additional cost. In a search for a better storage-efficiency trade-off, we designed Ciclad,an intersection-based sliding-window FCI miner. Leveraging in-depth insights into FCI evolution, it combines minimal storage with quick access. Experimental results indicate Ciclad's memory imprint is much lower and its performances globally better than competitor methods.Comment: KDD2

    Expressive generalized itemsets

    Get PDF
    Generalized itemset mining is a powerful tool to discover multiple-level correlations among the analyzed data. A taxonomy is used to aggregate data items into higher-level concepts and to discover frequent recurrences among data items at different granularity levels. However, since traditional high-level itemsets may also represent the knowledge covered by their lower-level frequent descendant itemsets, the expressiveness of high-level itemsets can be rather limited. To overcome this issue, this article proposes two novel itemset types, called Expressive Generalized Itemset (EGI) and Maximal Expressive Generalized Itemset (Max-EGI), in which the frequency of occurrence of a high-level itemset is evaluated only on the portion of data not yet covered by any of its frequent descendants. Specifically, EGI s represent, at a high level of abstraction, the knowledge associated with sets of infrequent itemsets, while Max-EGIs compactly represent all the infrequent descendants of a generalized itemset. Furthermore, we also propose an algorithm to discover Max-EGIs at the top of the traditionally mined itemsets. Experiments, performed on both real and synthetic datasets, demonstrate the effectiveness, efficiency, and scalability of the proposed approac

    Mining High Utility Sequential Patterns from Uncertain Web Access Sequences using the PL-WAP

    Get PDF
    In general, the web access patterns are retrieved from the web access sequence databases using various sequential pattern algorithms such as GSP, WAP, and PLWAP tree. However, these algorithms do not consider sequential data with quantity (internal utility) (e.g., the amount of the time spent by the user on a web page) and quality (external utility) (e.g., the rating of a web page in a website) information. These algorithms also do not work on uncertain sequential items (e.g., purchased products) having probability (0, 1). Factoring in the utility and uncertainty of each sequence item provides more product information that can be beneficial in mining profitable patterns from company’s websites. For example, a customer can purchase a bottle of ink more frequently than a printer but the purchase of a single printer can yield more profit to the business owner than the purchase of multiple bottles of ink. Most existing traditional uncertain sequential pattern algorithms such as U-Apriori, UF-Growth, and U-PLWAP do not include the utility measures. In U-PLWAP, the web sequences are derived from web log data without including the time spent by the user and the web pages are not associated with any rating. By considering these two utilities, sometimes the items with lower existential probability can be more profitable to the website owner. In utility based traditional algorithms, the only algorithm related to both uncertain and high utility is the PHUI-UP algorithm which considers the probability and utility as different entities and the retrieved patterns are not dependent with both due to two different thresholds, and it does not mine uncertain web access database sequences. This thesis proposes the algorithm HUU-PLWAP miner for mining uncertain sequential patterns with internal and external utility information using PLWAP tree approach that cut down on several database scans of level-wise approaches. HUU-PLWAP uses uncertain internal utility values (derived from sequence uncertainty model) and the constant external utility values (predefined) to retrieve the high utility sequential patterns from uncertain web access sequence databases with the help of U-PLWAP methodology. Experiments show that HUU-PLWAP is at least 95% faster than U-PLWAP, and 75% faster than the PHUI-UP algorithm

    High-level efficient constraint dominance programming for pattern mining problems

    Get PDF
    Pattern mining is a sub-field of data mining that focuses on discovering patterns in data to extract knowledge. There are various techniques to identify different types of patterns in a dataset. Constraint-based mining is a well-known approach to this where additional constraints are introduced to retrieve only interesting patterns. However, in these systems, there are limitations on imposing complex constraints. Constraint programming is a declarative methodology where the problem is modelled using constraints. Generic solvers can operate on a model to find the solutions. Constraint programming has been shown to be a well-suited and generic framework for various pattern mining problems with a selection of constraints and their combinations. However, a system that handles arbitrary constraints in a generic way has been missing in this field. In this thesis, we propose a declarative framework where the pattern mining models can be represented in high-level constraint specifications with arbitrary additional constraints. These models can be efficiently solved using underlying optimisations. The first contribution of this thesis is to determine the key aspects of solving pattern mining problems by creating an ad-hoc solver system. We investigate this further and create Constraint Dominance Programming (CDP) to be able to capture certain behaviours of pattern mining problems in an abstract way. To that end, we integrate CDP into the high-level \essence pipeline. Early empirical evaluation presents that CDP is already competitive with current existing techniques. The second contribution of this thesis is to exploit an additional behaviour, the incomparability, in pattern mining problems. By including the incomparability condition to CDP, we create CDP+I, a more explicit and even more efficient framework to represent these problems. We also prototype an automated system to deduct the optimal incomparability information for a given modelled problem. The third contribution of this thesis is to focus on the underlying solving of CDP+I to bring further efficiency. By creating the Solver Interactive Interface (SII) on SAT and SMT back-ends, we highly optimise not only CDP+I but any iterative modelling and solving, such as optimisation problems. The final contribution of this thesis is to investigate creating an automated configuration selection system to determine the best performing solving methodologies of CDP+I and introduce a portfolio of configurations that can perform better than any single best solver. In summary, this thesis presents a highly efficient, high-level declarative framework to tackle pattern mining problems
    corecore