169 research outputs found

    On Signature Transition and Compactification in Kaluza-Klein Cosmology

    Get PDF
    We consider an empty (4+1) dimensional Kaluza-Klein universe with a negative cosmological constant and a Robertson-Walker type metric. It is shown that the solutions to Einstein field equations have degenerate metric and exhibit transitioins from a Euclidean to a Lorentzian domain. We then suggest a mechanism, based on signature transition which leads to compactification of the internal space in the Lorentzian region as a∼∣Λ∣1/2a \sim |\Lambda|^{1/2}. With the assumption of a very small value for the cosmological constant we find that the size of the universe RR and the internal scale factor aa would be related according to Ra∼1Ra\sim 1 in the Lorentzian region. The corresponding Wheeler-DeWitt equation has exact solution in the mini-superspace giving rise to a quantum state which peaks in the vicinity of the classical solutions undergoing signature transition.Comment: 13 pages, 3 figure

    Drell-Yan production of multi Z'-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    Get PDF
    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z'-bosons and the Standard Model Z and {\gamma}. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z'-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z'-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi-Z' peaking structure. We conclude that in a variety of cases, specifically those in which the leptonic decays modes of one or more of the heavy neutral gauge bosons are suppressed and/or significant interference effects exist between these or with the background, especially present when their decay widths are significant, traditional search approaches based on the assumption of rather narrow and isolated objects might require suitable modifications to extract the underlying dynamics

    Explicit Supersymmetry Breaking on Boundaries of Warped Extra Dimensions

    Get PDF
    Explicit supersymmetry breaking is studied in higher dimensional theories by having boundaries respect only a subgroup of the bulk symmetry. If the boundary symmetry is the maximal subgroup allowed by the boundary conditions imposed on the fields, then the symmetry can be consistently gauged; otherwise gauging leads to an inconsistent theory. In a warped fifth dimension, an explicit breaking of all bulk supersymmetries by the boundaries is found to be inconsistent with gauging; unlike the case of flat 5D, complete supersymmetry breaking by boundary conditions is not consistent with supergravity. Despite this result, the low energy effective theory resulting from boundary supersymmetry breaking becomes consistent in the limit where gravity decouples, and such models are explored in the hope that some way of successfully incorporating gravity can be found. A warped constrained standard model leads to a theory with one Higgs boson with mass expected close to the experimental limit. A unified theory in a warped fifth dimension is studied with boundary breaking of both SU(5) gauge symmetry and supersymmetry. The usual supersymmetric prediction for gauge coupling unification holds even though the TeV spectrum is quite unlike the MSSM. Such a theory may unify matter and Higgs in the same SU(5) hypermultiplet.Comment: 30 pages, version to appear in Nucl. Phys.

    Linking Light Scalar Modes with A Small Positive Cosmological Constant in String Theory

    Full text link
    Based on the studies in Type IIB string theory phenomenology, we conjecture that a good fraction of the meta-stable de Sitter vacua in the cosmic stringy landscape tend to have a very small cosmological constant Λ\Lambda when compared to either the string scale MSM_S or the Planck scale MPM_P, i.e., Λ≪MS4≪MP4\Lambda \ll M_S^4 \ll M_P^4. These low lying de Sitter vacua tend to be accompanied by very light scalar bosons/axions. Here we illustrate this phenomenon with the bosonic mass spectra in a set of Type IIB string theory flux compactification models. We conjecture that small Λ\Lambda with light bosons is generic among de Sitter solutions in string theory; that is, the smallness of Λ\Lambda and the existence of very light bosons (may be even the Higgs boson) are results of the statistical preference for such vacua in the landscape. We also discuss a scalar field ϕ3/ϕ4\phi^3/\phi^4 model to illustrate how this statistical preference for a small Λ\Lambda remains when quantum loop corrections are included, thus bypassing the radiative instability problem.Comment: 35 pages, 7 figures; added subsection: Finite Temperature and Phase Transitio

    A Stringy Mechanism for A Small Cosmological Constant

    Full text link
    Based on the probability distributions of products of random variables, we propose a simple stringy mechanism that prefers the meta-stable vacua with a small cosmological constant. We state some relevant properties of the probability distributions of functions of random variables. We then illustrate the mechanism within the flux compactification models in Type IIB string theory. As a result of the stringy dynamics, we argue that the generic probability distribution for the meta-stable vacua typically peaks with a divergent behavior at the zero value of the cosmological constant. However, its suppression in the single modulus model studied here is modest.Comment: 36 pages, 8 figure

    New Dimensions for Randall-Sundrum Phenomenology

    Get PDF
    We consider a 6D extension of the Randall-Sundrum (RS) model, RS6, where the Standard Model (SM) gauge fields are allowed to propagate in an additional dimension, compactified on S1S^1 or S1/Z2S^1/Z_2. In a minimal scenario, fermions propagate in the 5D RS subspace and their localization provides a model of flavor. New Kaluza-Klein (KK) states, corresponding to excitations of the gauge fields along the 6th dimension, appear near the TeV scale. The new gauge KK modes behave differently from those in the 5D warped models. These RS6 states have couplings with strong dependence on 5D field localization and, within the SM, only interact with heavy fermions and the Higgs sector, to a very good approximation. Thus, the collider phenomenology of the new gauge KK states sensitively depends on the 5D fermion geography. We briefly discuss inclusion of SM fermions in all 6 dimensions, as well as the possibility of going beyond 6D.Comment: 15 pages, 5 figure
    • …
    corecore