262 research outputs found

    Nonlinear time-fractional dispersive equations

    Full text link
    In this paper we study some cases of time-fractional nonlinear dispersive equations (NDEs) involving Caputo derivatives, by means of the invariant subspace method. This method allows to find exact solutions to nonlinear time-fractional partial differential equations by separating variables. We first consider a third order time-fractional NDE that admits a four-dimensional invariant subspace and we find a similarity solution. We also study a fifth order NDE. In this last case we find a solution involving Mittag-Leffler functions. We finally observe that the invariant subspace method permits to find explicit solutions for a wide class of nonlinear dispersive time-fractional equations.Comment: 14 pages; in press in Communications in Applied and Industrial Mathematics (2014

    Peakompactons: Peaked compact nonlinear waves

    Get PDF
    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. These peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly by reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. A simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solu..

    Nature’s Optics and Our Understanding of Light

    Get PDF
    Optical phenomena visible to everyone abundantly illustrate important ideas in science and mathematics. The phenomena considered include rainbows, sparkling reflections on water, green flashes, earthlight on the moon, glories, daylight, crystals, and the squint moon. The concepts include refraction, wave interference, numerical experiments, asymptotics, Regge poles, polarisation singularities, conical intersections, and visual illusions

    Nonlinear Waves and Dispersive Equations

    Get PDF
    Nonlinear dispersive equations are models for nonlinear waves in a wide range of physical contexts. Mathematically they display an interplay between linear dispersion and nonlinear interactions, which can result in a wide range of outcomes from finite time blow-up to solitons and scattering. They are linked to many areas of mathematics and physics, ranging from integrable systems and harmonic analysis to fluid dynamics, geometry, general relativity and probability

    Solution strategies for nonlinear conservation laws

    Get PDF
    Nonlinear conservation laws form the basis for models for a wide range of physical phenomena. Finding an optimal strategy for solving these problems can be challenging, and a good strategy for one problem may fail spectacularly for others. As different problems have different challenging features, exploiting knowledge about the problem structure is a key factor in achieving an efficient solution strategy. Most strategies found in literature for solving nonlinear problems involve a linearization step, usually using Newton's method, which replaces the original nonlinear problem by an iteration process consisting of a series of linear problems. A large effort is then spent on finding a good strategy for solving these linear problems. This involves choosing suitable preconditioners and linear solvers. This approach is in many cases a good choice and a multitude of different methods have been developed. However, the linearization step to some degree involves a loss of information about the original problem. This is not necessarily critical, but in many cases the structure of the nonlinear problem can be exploited to a larger extent than what is possible when working solely on the linearized problem. This may involve knowledge about dominating physical processes and specifically on whether a process is near equilibrium. By using nonlinear preconditioning techniques developed in recent years, certain attractive features such as automatic localization of computations to parts of the problem domain with the highest degree of nonlinearities arise. In the present work, these methods are further refined to obtain a framework for nonlinear preconditioning that also takes into account equilibrium information. This framework is developed mainly in the context of porous media, but in a general manner, allowing for application to a wide range of problems. A scalability study shows that the method is scalable for challenging two-phase flow problems. It is also demonstrated for nonlinear elasticity problems. Some models arising from nonlinear conservation laws are best solved using completely different strategies than the approach outlined above. One such example can be found in the field of surface gravity waves. For special types of nonlinear waves, such as solitary waves and undular bores, the well-known Korteweg-de Vries (KdV) equation has been shown to be a suitable model. This equation has many interesting properties not typical of nonlinear equations which may be exploited in the solver, and strategies usually reserved to linear problems may be applied. In this work includes a comparative study of two discretization methods with highly different properties for this equation

    Mathematical Theory of Water Waves

    Get PDF
    Water waves, that is waves on the surface of a fluid (or the interface between different fluids) are omnipresent phenomena. However, as Feynman wrote in his lecture, water waves that are easily seen by everyone, and which are usually used as an example of waves in elementary courses, are the worst possible example; they have all the complications that waves can have. These complications make mathematical investigations particularly challenging and the physics particularly rich. Indeed, expertise gained in modelling, mathematical analysis and numerical simulation of water waves can be expected to lead to progress in issues of high societal impact (renewable energies in marine environments, vorticity generation and wave breaking, macro-vortices and coastal erosion, ocean shipping and near-shore navigation, tsunamis and hurricane-generated waves, floating airports, ice-sea interactions, ferrofluids in high-technology applications, ...). The workshop was mostly devoted to rigorous mathematical theory for the exact hydrodynamic equations; numerical simulations, modelling and experimental issues were included insofar as they had an evident synergy effect
    • …
    corecore