4,662 research outputs found

    Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning

    Full text link
    The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the first level of this architecture, we decompose the fMRI signal into multiple sub-bands using wavelet decompositions. At the second level, for each sub-band, we estimate a brain network extracted from short time windows of the fMRI signal. At the third level, we feed the adjacency matrices of each mesh network at each time-resolution into an unsupervised deep learning algorithm, namely, a Stacked De- noising Auto-Encoder (SDAE). The outputs of the SDAE provide a compact connectivity representation for each time window at each sub-band of the fMRI signal. We concatenate the learned representations of all sub-bands at each window and cluster them by a hierarchical algorithm to find the natural groupings among the windows. We observe that each cluster represents a cognitive task with a performance of 93% Rand Index and 71% Adjusted Rand Index. We visualize the mean values and the precisions of the networks at each component of the cluster mixture. The mean brain networks at cluster centers show the variations among cognitive tasks and the precision of each cluster shows the within cluster variability of networks, across the subjects.Comment: 6 pages, 3 figures, submitted to The 17th annual IEEE International Conference on BioInformatics and BioEngineerin

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    Functional geometry alignment and localization of brain areas

    Get PDF
    Matching functional brain regions across individuals is a challenging task, largely due to the variability in their location and extent. It is particularly difficult, but highly relevant, for patients with pathologies such as brain tumors, which can cause substantial reorganization of functional systems. In such cases spatial registration based on anatomical data is only of limited value if the goal is to establish correspondences of functional areas among different individuals, or to localize potentially displaced active regions. Rather than rely on spatial alignment, we propose to perform registration in an alternative space whose geometry is governed by the functional interaction patterns in the brain. We first embed each brain into a functional map that reflects connectivity patterns during a fMRI experiment. The resulting functional maps are then registered, and the obtained correspondences are propagated back to the two brains. In application to a language fMRI experiment, our preliminary results suggest that the proposed method yields improved functional correspondences across subjects. This advantage is pronounced for subjects with tumors that affect the language areas and thus cause spatial reorganization of the functional regions.National Institutes of Health (U.S.) (P01 CA067165)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (NIBIB NAMIC U54- EB005149)National Institutes of Health (U.S.) (NCRR NAC P41-RR13218)National Science Foundation (U.S.) (CAREER Grant 0642971)National Science Foundation (U.S.) (Grant IIS/CRCNS 0904625
    corecore