1,579 research outputs found

    Compact Zero-Knowledge Proofs of Small Hamming Weight

    Get PDF
    We introduce a new technique that allows to give a zero-knowledge proof that a committed vector has Hamming weight bounded by a given constant. The proof has unconditional soundness and is very compact: It has size independent of the length of the committed string, and for large fields, it has size corresponding to a constant number of commitments. We show five applications of the technique that play on a common theme, namely that our proof allows us to get malicious security at small overhead compared to semi-honest security: 1) actively secure k-out-of-n OT from black-box use of 1-out-of-2 OT, 2) separable accountable ring signatures, 3) more efficient preprocessing for the TinyTable secure two-party computation protocol, 4) mixing with public verifiability, and 5) PIR with security against a malicious client

    Approximating solution structure of the Weighted Sentence Alignment problem

    Full text link
    We study the complexity of approximating solution structure of the bijective weighted sentence alignment problem of DeNero and Klein (2008). In particular, we consider the complexity of finding an alignment that has a significant overlap with an optimal alignment. We discuss ways of representing the solution for the general weighted sentence alignment as well as phrases-to-words alignment problem, and show that computing a string which agrees with the optimal sentence partition on more than half (plus an arbitrarily small polynomial fraction) positions for the phrases-to-words alignment is NP-hard. For the general weighted sentence alignment we obtain such bound from the agreement on a little over 2/3 of the bits. Additionally, we generalize the Hamming distance approximation of a solution structure to approximating it with respect to the edit distance metric, obtaining similar lower bounds

    Communication Complexity of Permutation-Invariant Functions

    Full text link
    Motivated by the quest for a broader understanding of communication complexity of simple functions, we introduce the class of "permutation-invariant" functions. A partial function f:{0,1}n×{0,1}n{0,1,?}f:\{0,1\}^n \times \{0,1\}^n\to \{0,1,?\} is permutation-invariant if for every bijection π:{1,,n}{1,,n}\pi:\{1,\ldots,n\} \to \{1,\ldots,n\} and every x,y{0,1}n\mathbf{x}, \mathbf{y} \in \{0,1\}^n, it is the case that f(x,y)=f(xπ,yπ)f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}^{\pi}, \mathbf{y}^{\pi}). Most of the commonly studied functions in communication complexity are permutation-invariant. For such functions, we present a simple complexity measure (computable in time polynomial in nn given an implicit description of ff) that describes their communication complexity up to polynomial factors and up to an additive error that is logarithmic in the input size. This gives a coarse taxonomy of the communication complexity of simple functions. Our work highlights the role of the well-known lower bounds of functions such as 'Set-Disjointness' and 'Indexing', while complementing them with the relatively lesser-known upper bounds for 'Gap-Inner-Product' (from the sketching literature) and 'Sparse-Gap-Inner-Product' (from the recent work of Canonne et al. [ITCS 2015]). We also present consequences to the study of communication complexity with imperfectly shared randomness where we show that for total permutation-invariant functions, imperfectly shared randomness results in only a polynomial blow-up in communication complexity after an additive O(loglogn)O(\log \log n) overhead

    The problem with the SURF scheme

    Get PDF
    There is a serious problem with one of the assumptions made in the security proof of the SURF scheme. This problem turns out to be easy in the regime of parameters needed for the SURF scheme to work. We give afterwards the old version of the paper for the reader's convenience.Comment: Warning : we found a serious problem in the security proof of the SURF scheme. We explain this problem here and give the old version of the paper afterward
    corecore