3,513 research outputs found

    ES-ENAS: Blackbox Optimization over Hybrid Spaces via Combinatorial and Continuous Evolution

    Full text link
    We consider the problem of efficient blackbox optimization over a large hybrid search space, consisting of a mixture of a high dimensional continuous space and a complex combinatorial space. Such examples arise commonly in evolutionary computation, but also more recently, neuroevolution and architecture search for Reinforcement Learning (RL) policies. Unfortunately however, previous mutation-based approaches suffer in high dimensional continuous spaces both theoretically and practically. We thus instead propose ES-ENAS, a simple joint optimization procedure by combining Evolutionary Strategies (ES) and combinatorial optimization techniques in a highly scalable and intuitive way, inspired by the one-shot or supernet paradigm introduced in Efficient Neural Architecture Search (ENAS). Through this relatively simple marriage between two different lines of research, we are able to gain the best of both worlds, and empirically demonstrate our approach by optimizing BBOB functions over hybrid spaces as well as combinatorial neural network architectures via edge pruning and quantization on popular RL benchmarks. Due to the modularity of the algorithm, we also are able incorporate a wide variety of popular techniques ranging from use of different continuous and combinatorial optimizers, as well as constrained optimization.Comment: 22 pages. See https://github.com/google-research/google-research/tree/master/es_enas for associated cod

    Parameterization adaption for 3D shape optimization in aerodynamics

    Full text link
    When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called "Free-Form Deformation" approach based on 3D tensorial B\'ezier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs

    An EMO Joint Pruning with Multiple Sub-networks: Fast and Effect

    Full text link
    The network pruning algorithm based on evolutionary multi-objective (EMO) can balance the pruning rate and performance of the network. However, its population-based nature often suffers from the complex pruning optimization space and the highly resource-consuming pruning structure verification process, which limits its application. To this end, this paper proposes an EMO joint pruning with multiple sub-networks (EMO-PMS) to reduce space complexity and resource consumption. First, a divide-and-conquer EMO network pruning framework is proposed, which decomposes the complex EMO pruning task on the whole network into easier sub-tasks on multiple sub-networks. On the one hand, this decomposition reduces the pruning optimization space and decreases the optimization difficulty; on the other hand, the smaller network structure converges faster, so the computational resource consumption of the proposed algorithm is lower. Secondly, a sub-network training method based on cross-network constraints is designed so that the sub-network can process the features generated by the previous one through feature constraints. This method allows sub-networks optimized independently to collaborate better and improves the overall performance of the pruned network. Finally, a multiple sub-networks joint pruning method based on EMO is proposed. For one thing, it can accurately measure the feature processing capability of the sub-networks with the pre-trained feature selector. For another, it can combine multi-objective pruning results on multiple sub-networks through global performance impairment ranking to design a joint pruning scheme. The proposed algorithm is validated on three datasets with different challenging. Compared with fifteen advanced pruning algorithms, the experiment results exhibit the effectiveness and efficiency of the proposed algorithm

    Eliciting Expertise

    No full text
    Since the last edition of this book there have been rapid developments in the use and exploitation of formally elicited knowledge. Previously, (Shadbolt and Burton, 1995) the emphasis was on eliciting knowledge for the purpose of building expert or knowledge-based systems. These systems are computer programs intended to solve real-world problems, achieving the same level of accuracy as human experts. Knowledge engineering is the discipline that has evolved to support the whole process of specifying, developing and deploying knowledge-based systems (Schreiber et al., 2000) This chapter will discuss the problem of knowledge elicitation for knowledge intensive systems in general
    corecore