241 research outputs found

    A Tri-band-notched UWB Antenna with Low Mutual Coupling between the Band-notched Structures

    Get PDF
    A compact printed U-shape ultra-wideband (UWB) antenna with triple band-notched characteristics is presented. The proposed antenna, with compact size of 24×33 mm2, yields an impedance bandwidth of 2.8-12GHz for VSWR<2, except the notched bands. The notched bands are realized by introducing two different types of slots. Two C-shape half-wavelength slots are etched on the radiating patch to obtain two notched bands in 3.3-3.7GHz for WiMAX and 7.25-7.75GHz for downlink of X-band satellite communication systems. In order to minimize the mutual coupling between the band-notched structures, the middle notched band in 5-6GHz for WLAN is achieved by using a U-slot defected ground structure. The parametric study is carried out to understand the mutual coupling. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications

    A Coplanar Waveguide Fed Hexagonal Shape Ultra Wide Band Antenna with WiMAX and WLAN Band Rejection

    Get PDF
    In this paper, a coplanar waveguide (CPW) fed hexagonal shape planar antenna has been considered for ultra-wide band (UWB). This antenna is then modified to obtain dual band rejection. The Wireless Local Area Network (WLAN) and Wireless Microwave Access (WiMAX) band rejections are realized by symmetrically incorporating a pair of L-shape slots within the ground plane as well as a couple of I-shape stubs inserted on the bottom side of radiating patch. The proposed antenna has stop bands of 5.05-5.92 GHz and 3.19-3.7 GHz while maintaining the wideband performance from 2.88 - 13.71 GHz with reflection coefficient of ≤ -10 dB. The antenna exhibits satisfactory omni-directional radiation characteristics throughout its operating band. The peak gain varies from 2 dB to 6 dB in the entire UWB frequency regions except at the notch bands. Surface current distributions are used to analyze the effects of the L-slot and I-shape stub. The measured group delay has small variation within the operating band except notch bands and hence the proposed antenna may be suitable for UWB applications

    A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications

    Get PDF
    A compact, circular UWB fractal antenna with triple reconfigurable notch rejection bands is proposed. It rejects the crowded frequency bands WiMAX, WLAN and X band interferences produced in UWB communication systems. The proposed fractal structure consists of a basic circular patch with circular fractal iterations. By employing this new structure of fractals, the overall size of antenna is reduced 53% to 21 × 25 mm, in comparison with traditional circular monopole antenna. The implemented antenna operates at 3.1–10 GHz. Re-configurability is realized by designing slots and split ring resonators in desired frequencies with the attached PIN diodes. WLAN band rejection was realized by creating a pair of optimized L-shaped slots in the ground plane. By etching a split ring resonator and a U-shaped slot, X and WiMAX bands were also rejected. Furthermore, by attaching diodes to aforementioned slots and designating the diodes on/off, different bands can be included or rejected. In time domain, the antenna properties are evaluated by a figure of merit called fidelity factor. Finally, the antenna properties are measured in anechoic chamber and the results agrees with simulation findings

    A planar UWB semicircular-shaped monopole antenna with quadruple band notch for WiMAX, ARN, WLAN, and X-Band

    Get PDF
    This paper proposed quadruple notched frequency bands ultra-wideband (UWB) antenna. The antenna is a semicircular-shaped monopole type of a compact size 36x24 mm, covering frequency range of 3.02-14 GHz. Four rejected narrow bands including WiMAX (3.3-3.7GHz), ARN (4.2-4.5 GHz), WLAN (5.15-5.825GHz), X-Band (7.25-7.75) have been achieved using inserting slots techniques in the patch, feed line, and ground plane. The slots dimensions have been optimized for the required reject bands. The antenna design and analysis have been investigated by simulation study using CST-EM software package. The antenna characteristics including impedance bandwidth, surface current, gain, radiation efficiency, radiation pattern have been discussed

    A compact UWB monopole antenna with penta band notched characteristics

    Get PDF
    A modified rectangular monopole ultra-wideband (UWB) antenna with penta notched frequency bands is presented. An inverted U shaped and slanted U-shaped on the radiating patch are inserted to achieve WiMAX and ARN bands rejection respectively, two mirrored summation Σ-shaped and four mirrored 5-shaped slots are inserted on the partial ground to achieve WLAN and X-band bands rejection respectively, finally rectangular shaped slot with partially open on the feed is inserted to achieve ITU-8 band rejection. The proposed antenna which was simulated has a compact size 30×35×1.6 m3. It is operated with impedance bandwidth 2.8-10.6 GHz at |S11| &lt; −10 dB, that supported UWB bandwidth with filtering the five narrowbands that avoid the possible interference with them. The simulated resonant frequency for notched filters received 3.55, 4.55, 5.53, 7.45, 8.16 GHZ, for WiMAX, ARN, WLAN, X-Band, ITU-8 respectively. The proposed antenna is suitable for wireless communication such as mobile communication and internet of everything (IoE). Throughout this paper, CST-EM software package was used for the design implementation. Surface current distributions for all notched filters were investigated and shown that it is concentrated around the feeding point and the inserted notched slots proving that there is no radiation to the space due to maximum stored electromagnetic energy around each investigated notch slot, proving that the slots play a role of a quarter wavelength transformer which generates for each notched band, maximum gain, and radiation pattern are also investigated

    A reconfigurable dual port antenna system for underlay/interweave cognitive radio

    Get PDF
    An antenna system that is reconfigurable in frequency is presented in this paper as a novel dual port design that serves both undelay and interweave cognitive radio. This 25×40×0.8 mm3 system is composed of two wide slot antennas: the first is designed as an ultra-wideband (UWB) antenna with controllable band rejection capabilities, while the second antenna is reconfigurable for communication purposes. Three slots are etched into the patch of the UWB antenna to obtain band notching in wireless local area network/Xband/International Telecommunication Union bands (WLAN/Xband/ITU) bands which can be controlled by a positive-intrinsic-negative (PIN) diode across each slot. The configuration states of these three diodes are all useable that produces seven band rejection modes plus the UWB operation mode. The second antenna is configured by five PIN diodes to operate either in Cband, WLAN or Xband regions which results in three interweave modes when setting the first antenna for UWB sensing. The design is simulated by computer simulation technology (CST) v.10. S21 results shows good isolation while input reflection coefficient and realized gain results prove system’s scanning, filtering and communication capabilities. This system is new that it gathers the undelay/interweave operation in a single design and when considering its large number of operation modes it looks adequate for many cognitive radio applications

    Planar EBG Loaded UWB Monopole Antenna with Triple Notch Characteristics

    Get PDF
    A triple band-notched ultra-wideband (UWB) monopole antenna using a planar electromagnetic bandgap (EBG) design is proposed. The EBG unit cell composed by an Archimedean spiral and inter-digital capacitance demonstrates the notch frequencies. The antenna with EBG cells near the feed line occupies only 30 × 36 mm2 with triple band-rejection characteristics. The three notched bands at 4.2 GHz, 5.2 GHz, and 9.1 GHz can be used in C-band satellite downlink, wireless local area network (WLAN), and X-band radio location for naval radar or military required applications. In addition, the proposed design is flexible to tune different notched bands by altering the EBG dimensions. The parametric analysis is studied in details after placing the EBG unit cells near the feed line to show the coupling effect. The input impedance and surface current distribution analysis are also analyzed to understand the effect of EBG at notch frequencies. The proposed design prototype is fabricated and characterized. A fairly considerable agreement is observed between simulated and measured results

    Polarization Diversity UWB Antennas with and without Notched Bands

    Full text link
    Acknowledgement to The Electromagnetics AcademyIn this article, a couple of UWB antennas are presented. These antennas have the shape of two overlapped circles. The presented antennas are polarization diversity antennas with and without dual band reject filters. Measurements show that the antennas work well within the whole UWB. Antennas have practical reflection parameters S11 and S22 lower than −10 dB, practical coupling parameters S12 and S21 lower than −15 dB, an Envelope Correlation Coefficient lower than 0.015 and a diversity gain between 9.97 to 9.99 dB. Simulations of the antennas are done using the CST softwar

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    The Design of a Uniplanar Printed Triple Band-Rejected UWB Antenna using Particle Swarm Optimization and the Firefly Algorithm

    Get PDF
    YesA compact planar monopole antenna is proposed for ultra-wideband applications. The antenna has a microstrip line feed and band-rejected characteristics and consists of a ring patch and partial ground plane with a defective ground structure of rectangular shape. An annular strip is etched above the radiating element and two slots, one C-shaped and one arc-shaped, are embedded in the radiating patch. The proposed antenna has been optimized using bio-inspired algorithms, namely Particle Swarm Optimization and the Firefly Algorithm, based on a new software algorithm (Antenna Optimizer). Multi-objective optimization achieves rejection bands at 3.3 to 3.7 GHz for WiMAX, 5.15 to 5.825 GHz for the 802.11a WLAN system or HIPERLAN/2, and 7.25 to 7.745 GHz for C-band satellite communication systems. Validated results show wideband performance from 2.7 to 10.6 GHz with S11 ˂ -10 dB. The antenna has compact dimensions of 28 × 30 mm2. The radiation pattern is comparatively stable across the operating band with a relatively stable gain except in the notched bands.This work was supported in part by the United Kingdom Engineering and Physical Science Research Council (EPSRC) under Grant EP/E022936A, TSB UK under grant application KTP008734 and the Iraqi Ministry of Higher Education and Scientific Research
    corecore