3,936 research outputs found

    GraCT: A Grammar based Compressed representation of Trajectories

    Get PDF
    We present a compressed data structure to store free trajectories of moving objects (ships over the sea, for example) allowing spatio-temporal queries. Our method, GraCT, uses a k2k^2-tree to store the absolute positions of all objects at regular time intervals (snapshots), whereas the positions between snapshots are represented as logs of relative movements compressed with Re-Pair. Our experimental evaluation shows important savings in space and time with respect to a fair baseline.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    Towards a compact representation of temporal rasters

    Get PDF
    Big research efforts have been devoted to efficiently manage spatio-temporal data. However, most works focused on vectorial data, and much less, on raster data. This work presents a new representation for raster data that evolve along time named Temporal k^2 raster. It faces the two main issues that arise when dealing with spatio-temporal data: the space consumption and the query response times. It extends a compact data structure for raster data in order to manage time and thus, it is possible to query it directly in compressed form, instead of the classical approach that requires a complete decompression before any manipulation. In addition, in the same compressed space, the new data structure includes two indexes: a spatial index and an index on the values of the cells, thus becoming a self-index for raster data.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 690941. Published in SPIRE 201

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Learning n-ary Node Selecting Tree Transducers from Completely Annotated Examples

    Get PDF
    International audienceWe present the first algorithm for learning n-ary node selection queries in trees from completely annotated examples by methods of grammatical inference. We propose to represent n-ary queries by deterministic n-ary node selecting tree transducers (NSTTs), that are known to capture the class of MSO-definable n-ary queries. Despite of this highly expressive, we show that n-aryy queries, selecting a polynomially bounded number of tuples per tree, represented by deterministic NSTTs can be learned from polynomial time and data while allowing for efficient enumeration of query answers. An application to wrapper induction in Web information extraction yields encouraging results

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Prospects and limitations of full-text index structures in genome analysis

    Get PDF
    The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared

    Grammar compressed sequences with rank/select support

    Get PDF
    An early partial version of this paper appeared in Proc. SPIRE 2014: G. Navarro, A. Ordóñez Grammar compressed sequences with rank/select support, Proc. 21st International Symposium on String Processing and Information Retrieval, LNCS, SPIRE, vol. 8799 (2014), pp. 31–44The final publication is available at Springer via http://dx.doi.org/10.1016/j.jda.2016.10.001[Abstract] Sequence representations supporting not only direct access to their symbols, but also rank/select operations, are a fundamental building block in many compressed data structures. Several recent applications need to represent highly repetitive sequences, and classical statistical compression proves ineffective. We introduce, instead, grammar-based representations for repetitive sequences, which use up to 6% of the space needed by statistically compressed representations, and support direct access and rank/select operations within tens of microseconds. We demonstrate the impact of our structures in text indexing applications.Chile. Fondo Nacional de Desarrollo Científico y Tecnológico; 140796Ministerio de Economía, Industria y Competitividad; 00645663/ITC-20133062Ministerio de Economía, Industria y Competitividad; TIN2009-14560-C03-02Ministerio de Economía, Industria y Competitividad; TIN2010-21246-C02-01Ministerio de Economía, Industria y Competitividad; TIN2013-46238-C4-3-RMinisterio de Economía, Industria y Competitividad; TIN2013-47090-C3-3-PMinisterio de Economía, Industria y Competitividad; AP2010-6038Xunta de Galicia; GRC2013/05
    corecore