364 research outputs found

    Total Variability Space for LDA-based multi-viewtext categorization

    Get PDF
    Paru sous le titre Compact Multiview Representation of Documents Based on the Total Variability SpaceInternational audienceMapping text document into LDA-based topic-space is a classical way to extract high level representation of text documents. Unfortunatly , LDA is higly sensitive to hyper-parameters related to class number or word and topic distribution , and there is not any systematic way to prior estimate optimal configurations. Morover , various hyperparameter configurations offer complementary views on the document. In this paper , we propose a method based on a two-step process that , first , expands representation space by using a set of topic spaces and , second , compacts representation space by removing poorly relevant dimensions. These two steps are based respectivelly on multi-view LDA-based representation spaces and factor-analysis models. This model provides a view-independant representation of documents while extracting complementary information from a massive multi-view representation. Experiments are conducted on the DECODA conversation corpus and Reuters-21578 textual dataset. Results show the effectiveness of the proposed multi-view compact representation paradigm. The proposed categorization system reaches an accuracy of 86. 9% and 86. 5% respectively with manual and automatic transcriptions of conversations , and a macro-F1 of 80% during a classification task of the well-known studied Reuters-21578 corpus , with a significant gain compared to the baseline (best single topic space configuration) , as well as methods and document representations previously studied

    Spoken Language Understanding in a Latent Topic-based Subspace

    Get PDF
    International audiencePerformance of spoken language understanding applications declines when spoken documents are automatically transcribed in noisy conditions due to high Word Error Rates (WER). To improve the robustness to transcription errors, recent solutions propose to map these automatic transcriptions in a latent space. These studies have proposed to compare classical topic-based representations such as Latent Dirichlet Allocation (LDA), supervised LDA and author-topic (AT) models. An original compact representation, called c-vector, has recently been introduced to walk around the tricky choice of the number of latent topics in these topic-based representations. Moreover, c-vectors allow to increase the robustness of document classification with respect to transcription errors by compacting different LDA representations of a same speech document in a reduced space and then compensate most of the noise of the document representation. The main drawback of this method is the number of sub-tasks needed to build the c-vector space. This paper proposes to both improve this compact representation (c-vector) of spoken documents and to reduce the number of needed sub-tasks, using an original framework in a robust low dimensional space of features from a set of AT models called "Latent Topic-based Sub-space" (LTS). In comparison to LDA, the AT model considers not only the dialogue content (words), but also the class related to the document. Experiments are conducted on the DECODA corpus containing speech conversations from the call-center of the RATP Paris transportation company. Results show that the original LTS representation outperforms the best previous compact representation (c-vector), with a substantial gain of more than 2.5% in terms of correctly labeled conversations

    An overview of view-based 2D-3D indexing methods

    Get PDF
    International audienceThis paper proposes a comprehensive overview of state of the art 2D/3D, view-based indexing methods. The principle of 2D/3D indexing methods consists of describing 3D models by means of a set of 2D shape descriptors, associated with a set of corresponding 2D views (under the assumption of a given projection model). Notably, such an approach makes it possible to identify 3D objects of interest from 2D images/videos. An experimental evaluation is also proposed, in order to examine the influence of the number of views and of the associated viewing angle selection strategies on the retrieval results. Experiments concern both 3D model retrieval and image recognition from a single view. Results obtained show promising performances, with recognition rates from a single view higher then 66%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos

    Feature Reduction and Representation Learning for Visual Applications

    Get PDF
    Computation on large-scale data spaces has been involved in many active problems in computer vision and pattern recognition. However, in realistic applications, most existing algorithms are heavily restricted by the large number of features, and tend to be inefficient and even infeasible. In this thesis, the solution to this problem is addressed in the following ways: (1) projecting features onto a lower-dimensional subspace; (2) embedding features into a Hamming space. Firstly, a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) is proposed for discriminant analysis of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. Extensive experimental validation on three benchmark datasets demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification. Secondly, for action recognition, a novel binary local representation for RGB-D video data fusion is presented. In this approach, a general local descriptor called Local Flux Feature (LFF) is obtained for both RGB and depth data by computing the local fluxes of the gradient fields of video data. Then the LFFs from RGB and depth channels are fused into a Hamming space via the Structure Preserving Projection (SPP), which preserves not only the pairwise feature structure, but also a higher level connection between samples and classes. Comprehensive experimental results show the superiority of both LFF and SPP. Thirdly, in respect of unsupervised learning, SPP is extended to the Binary Set Embedding (BSE) for cross-modal retrieval. BSE outputs meaningful hash codes for local features from the image domain and word vectors from text domain. Extensive evaluation on two widely-used image-text datasets demonstrates the superior performance of BSE compared with state-of-the-art cross-modal hashing methods. Finally, a generalized multiview spectral embedding algorithm called Kernelized Multiview Projection (KMP) is proposed to fuse the multimedia data from multiple sources. Different features/views in the reproducing kernel Hilbert spaces are linearly fused together and then projected onto a low-dimensional subspace by KMP, whose performance is thoroughly evaluated on both image and video datasets compared with other multiview embedding methods

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Human Motion Analysis for Efficient Action Recognition

    Get PDF
    Automatic understanding of human actions is at the core of several application domains, such as content-based indexing, human-computer interaction, surveillance, and sports video analysis. The recent advances in digital platforms and the exponential growth of video and image data have brought an urgent quest for intelligent frameworks to automatically analyze human motion and predict their corresponding action based on visual data and sensor signals. This thesis presents a collection of methods that targets human action recognition using different action modalities. The first method uses the appearance modality and classifies human actions based on heterogeneous global- and local-based features of scene and humanbody appearances. The second method harnesses 2D and 3D articulated human poses and analyizes the body motion using a discriminative combination of the parts’ velocities, locations, and correlations histograms for action recognition. The third method presents an optimal scheme for combining the probabilistic predictions from different action modalities by solving a constrained quadratic optimization problem. In addition to the action classification task, we present a study that compares the utility of different pose variants in motion analysis for human action recognition. In particular, we compare the recognition performance when 2D and 3D poses are used. Finally, we demonstrate the efficiency of our pose-based method for action recognition in spotting and segmenting motion gestures in real time from a continuous stream of an input video for the recognition of the Italian sign gesture language
    • …
    corecore