60 research outputs found

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Evaluation of Planar Inkjet-Printed Antennas on a Low-Cost Origami Flapping Robot

    Get PDF
    An investigation on antenna solutions for expendable origami paper flapping robots is presented. An origami flapping robotic bird that can be produced using standard A4 paper is employed. Antennas resonating at the two commonly used frequency bands, 2.4 GHz and 5.2 GHz, are designed for the limited space available on the folded origami structure. Two developments of the same dual-band monopole antenna are discussed. The first antenna is located on the robot's spine and the second on its tail. A space diversity configuration is also studied. The antennas are printed directly onto a photo paper substrate and then folded into an origami robotic crane's body structure. An ordinary desktop inkjet printer fitted with silver nanoparticle conductive ink cartridges has been employed. CST Microwave Studio TM has been used to design the antennas. A good agreement between the measured and simulated S11 results is achieved with a reasonable -10dB impedance bandwidth realized in the three cases studied. The radiation patterns are omnidirectional in the XZ plane which is desirable for the specific application. The diversity configuration has a mutual coupling of <; -23dB and a gain of 1.4 dB and 2.8 dB at 2.4 GHz and 5.2 GHz respectively. The aim is to provide a new vision for antennas embedded into expandable flying robots based on traditional origami structures

    A Novel Transparent UWB Antenna for Photovoltaic Solar Panel Integration and RF Energy Harvesting

    Get PDF
    A novel transparent ultra-wideband antenna for photovoltaic solar-panel integration and RF energy harvesting is proposed in this paper. Since the approval by the Federal Communications Committee (FCC) in 2002, much research has been undertaken on UWB technology, especially for wireless communications. However, in the last decade, UWB has also been proposed as a power harvester. In this paper, a transparent cone-top-tapered slot antenna covering the frequency range from 2.2 to 12.1 GHz is designed and fabricated to provide UWB communications whilst integrated onto solar panels as well as harvest electromagnetic waves from free space and convert them into electrical energy. The antenna when sandwiched between an a-Si solar panel and glass is able to demonstrate a quasi omni-directional pattern that is characteristic of a UWB. The antenna when connected to a 2.55-GHz rectifier is able to produce 18-mV dc in free space and 4.4-mV dc on glass for an input power of 10 dBm at a distance of 5 cm. Although the antenna presented in this paper is a UWB antenna, only an operating range of 2.49 to 2.58 GHz for power scavenging is possible due to the limitation of the narrowband rectifier used for the study
    • …
    corecore