25 research outputs found

    Recent Trends in Printed Ultra-Wideband (UWB) Antennas

    Get PDF

    Methods to Design Microstrip Antennas for Modern Applications

    Get PDF

    Statistical Review Evaluation of 5G Antenna Design Models from a Pragmatic Perspective under Multi-Domain Application Scenarios

    Get PDF
    Antenna design for the 5G spectrum requires analysis of contextual frequency bands, design of miniaturization techniques, gain improvement models, polarization techniques, standard radiation pattern designs, metamaterial integration, and substrate selection. Most of these models also vary in terms of qualitative & and quantitative parameters, which include forward gain levels, reverse gain, frequency response, substrate types, antenna shape, feeding levels, etc. Due to such a wide variety in performance, it is ambiguous for researchers to identify the optimum models for their application-specific use cases. This ambiguity results in validating these models on multiple simulation tools, which increases design delays and the cost of deployments. To reduce this ambiguity, a survey of recently proposed antenna design models is discussed in this text. This discussion recommended that polarization optimization and gain maximization are the major impact factors that must be considered while designing antennas. It is also recommended that collocated microstrip slot antennas, fully planar dual-polarized broadband antennas, and real-time deployments of combined slot antenna pairs with wide-band decoupling are very advantageous. Based on this discussion, researchers will be able to identify optimal performance-specific models for different applications. This discussion also compares underlying models in terms of their quantitative parameters, which include forward gain levels, bandwidth, complexity of deployment, scalability, and cost metrics. Upon referring to this comparison, researchers will be able to identify the optimum models for their performance-specific use cases. This review also formulates a novel Antenna Design Rank Metric (ADRM) that combines the evaluated parameters, thereby allowing readers to identify antenna design models that are optimized for multiple parameters and can be used for large-scale 5G communication scenarios

    UWB antennas for wireless communications

    Get PDF
    This thesis focuses on four inter-related research topics on the design and analysis of compact planar ultra wide-band (UWB) monopole antennas for future wireless communications, namely, a planar super-wide-band (SWB) monopole antenna, a planar UWB antenna with band-notched characteristics, a planar UWB antenna with reconfigurable band-rejection features, and a planar UWB multiple-input and multiple-output (MIMO) antenna. A novel Mickey-mouse shaped planar monopole antenna with SWB performance is proposed and investigated. Three different techniques for bandwidth enhancement are implemented. The antenna is evolved from the traditional circular monopole antenna and has achieved an impedance bandwidth of more than 100:1 and a stable radiation patterns over a wider bandwidth. The design of a compact planar UWB monopole antenna (22 mm × 34 mm), incorporated with five m-shaped resonators (MSRs) at different positions, to achieve quintuple-band-notched performance is presented. The frequency-domain performance (in term of reflection coefficients, realized gain, efficiency, and radiation pattern), and time-domain performance (in term of pulse responses and fidelity), are investigated by simulation and measurement. The results show that the proposed UWB antenna has approximately omnidirectional radiation patterns and excellent band-notched behaviours and good time domain performance with the fidelity of more than 85.5% in the pulse response. A planar UWB monopole antenna with reconfigurable band-notched characteristics is also introduced. The band rejection is realized by incorporating two co-directional split ring resonators (CSRR) on the radiator element. Switches are added to the CSRR structures to achieve the reconfigurability. The proposed antenna can operate at different switching states including a UWB state, single and dual band-notched states with good rejection behaviours. Good radiation patterns and gain values are also obtained for different switching states. This compact wideband antenna can be very good candidate for a wide range of mobile portable applications. A compact planar UWB-MIMO antenna (60 mm × 45 mm) is presented for wireless applications. The wideband isolation of more than 15 dB is achieved by etching a new trident-like slot on the ground plane of the antenna. An equivalent circuit have been introduced for analysis and the diversity performances are studied. The results show that the proposed MIMO antenna is a very good candidate for wireless applications. The study of these four special antennas has demonstrated that, using various techniques, the planar monopole antenna can be an excellent choice for a wide range of wireless communication applications

    Geometry Modification Assessment and Design Optimization of Miniaturized Wideband Antennas

    Get PDF
    Maintaining small physical dimensions of antenna structures is an important consideration for contemporary wireless communication systems. Typically, antenna miniaturization is achieved through various topological modifications of the basic antenna geometries. The modifications can be applied to the ground plane, the feed line, and/or antenna radiator. Unfortunately, various topology alteration options are normally reported on a case-to-case basis. The literature is lacking systematic investigations or comparisons of different modification methods and their effects on antenna miniaturization rate as well as electrical performance. Another critical issue—apart from setting up the antenna topology—is a proper adjustment of geometry parameters of the structure so that the optimum design can be identified. Majority of researchers utilize experience-driven parameter sweeping which typically yields designs that are acceptable, but definitely not optimal. Furthermore, in many of the cases, the authors provide a cooperative progression before and after topological modifications that generally lead to a certain reduction of the antenna size, however, with appropriate parameter adjustment missing. Consequently, suitability of particular modifications in the miniaturization context is not conclusively assessed. In order to carry out such an assessment in a reliable manner, identification of the truly optimum design is necessary. This requires rigorous numerical optimization of all antenna parameters (especially in the case of complex antenna topologies) with the primary objective being size reduction, and supplementary constraints imposed on selected electrical or field characteristics. This thesis is an attempt to carry out systematic investigations concerning the relevance of geometry modifications in the context of wideband antenna miniaturization. The studies are carried out based on selected benchmark sets of wideband antennas. In order to ensure a fair comparison, all geometry parameters are rigorously tuned through EM-driven optimization to obtain the minimum footprint while maintaining acceptable electrical performance. The results demonstrate that it is possible to conclusively distinguish certain classes of topology alterations that are generally advantageous in the context of size reduction, as well as quantify the benefits of modifications applied to various parts of the antenna structure, e.g., with feed line modifications being more efficient than the ground plane and radiator ones. Several counterexamples have been discussed as well, indicating that certain modifications can be counterproductive when introduced ad hoc and without proper parameter tuning. The results of these investigations have been utilized to design several instances of novel compact wideband antennas with the focus on isolation improvement and overall antenna size reduction in multi-input-multi-output (MIMO) systems. Experimental validations confirming the numerical findings are also provided. To the best of the author’s knowledge, the presented study is the first systematic investigation of this kind in the literature and can be considered a step towards the development of better, low-cost, and more compact antennas for wireless communication systems.Fyrir þráðlaus fjarskiptakerfi er mikilvægt að tryggja að loftnet séu lítil að umfangi. Yfirleitt er smækkun loftneta náð með ýmis konar formbreytingum á grunngerðum þeirra. Formbreytingarnar geta verið á jarðtengingu, fæðilínu og / eða geislagjafa. Því miður er venjulega einungis sagt frá slíkum formbreytingum fyrir einstaka tilvik. Skortur er á kerfisbundnu mati og samanburði á mismunandi formbreytingum og hvaða áhrif þær hafa á smækkun og raffræðilega eiginleika loftneta. Annað mikilvægt atriði, fyrir utan að ákveða gerð formbreytingarinnar, er að velja stika sem lýsa nákvæmri lögun svo að bestuð hönnun geti átt sér stað. Flestir hönnuðir notast við þá aðferð að notast við stikaskimun sem byggir á reynslugögnum, en sú aðferð skilar almennt ásættanlegri hönnun, þó ekki bestaðri. Einnig er í mörgum tilvikum sagt frá samhliða þróun fyrir og eftir formbreytingu sem leiðir til smækkunar án þess að tilgreina breytingar á stikum. Fyrir vikið er erfitt að meta til hlítar ávinning af mismunandi formbreytingum. Til þess að framkvæma slíkt mat með áreiðanlegum hætti er nauðsynlegt að geta metið bestu hönnunarútfærslu nákvæmlega. Þetta kallar á ítarlega tölulega bestun allra stika sem lýsa loftnetinu (einkum fyrir loftnet flókinnar lögunnar) þar sem aðalmarkmkið bestunar er smækkun en skorður eru settar af raffræðilegum eiginleikum. Í þessari ritgerð er leitast við að kerfisbundna rannsókn á mikilvægi formbreytingna í tengslum við smækkun bandbreiðra loftneta. Rannsóknin byggir á völdum söfnum viðmiðunarloftneta. Til að tryggja rétt mat eru allir stikar er varða lögun stilltir með rafsegulfræðilegri hermun til að tryggja minnst rúmtak með ásættanlegum raffræðilegum eiginleikum. Niðurstöðurnar sýna að unnt er að greina, án vafa, ákveðna flokka formbreytinga sem eru að jafnaði til þess fallnir að smækka loftnet. Auk þessa er hægt að reikna ávinning af formbreytingum mismunandi hluta loftnetsins, t.d. að breytingar á fæðilínu eru almennt hagkvæmari en breytingar á geislagjafa eða jarðtengingu. Þá er greint frá nokkrum tilvikum þar sem tilfallandi formbreytingar geta verið til tjóns ef ekki stikaval er ekki gert með réttum hætti. Niðurstöður þessara rannsóknar hafa verið notaðar til að hanna nokkur nýstárleg breiðbandsloftnet með áherslu á smækkun og bættan aðskilnað fjölgátta (MIMO) loftneta. Töluleg hermun er sannreynd með tilraunum. Að bestu vitund höfundar er hér um fyrstu kerfisbundnu rannsókn þessarar gerðar að ræða og má reikna með að hún leiði til þróunar betri, ódýrari og smærri loftneta fyrir þráðlaus fjarskiptakerfi.The Ph.D. project was supported by the Icelandic Research Center (RANNIS) Grant 16329905

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    High Gain Broadband mm-Wave Antenna Arrays for Short-range Wireless Communication Systems

    Get PDF
    Recently, the ever-increasing demand for fifth-generation (5G) wireless applications has turned millimeter-wave (mm-wave) multi-beam array antenna into quite a promising research direction. Besides offering a remarkable bandwidth for high-speed wireless connectivity, the short wavelengths (1 to 10 mm) of mm-wave signals makes the size of the antenna array with beamforming network (BFN) compatible with a transceiver front-end. The high losses associated with mm-wave wireless links and systems considered the foremost challenge and may restrict the wireless communication range. Therefore, a wideband substrate integrated waveguide (SIW)-based antenna with high gain and beam scanning capabilities would be a solution for these challenges, as it can increase the coverage area of mm-wave wireless systems and mitigate the multipath interference to achieve a high signal to noise (S/N) ratio, and thereby fulfill the link budget requirements. This thesis focuses on the analysis and design of single- and multi-beam mm-wave antenna arrays based on SIW technology to fulfill the growing demand for wideband high-gain planar antenna arrays with beam steering capability at V-band. A tapered slot antenna (TSA) and cavity-backed patch antenna are used as the main radiators in these systems to achieve high-gain and high efficiency over a wide range of operating frequencies. Accordingly, numerous design challenges and BFN-related issues have been addressed in this work. Firstly, an antipodal Fermi tapered slot antenna (AFTSA) with sine-shaped corrugations is proposed at V-band. The antenna provides a flat measured gain of 20 dB with a return loss better than 22 dB. In addition, A broadband double-layer SIW-to-slotline transition is proposed to feed a planar linearly tapered slot antenna (PLTSA) covering the band 46-72 GHz. This new feeding technique, which addresses the bandwidth limits of regular microstrip-to-slotline transitions and avoids the bond wires and air bridges, is utilized to feed a 1x4 SIW-based PLTSA array. Secondly, a new cavity-backed aperture-coupled patch antenna with overlapped 1-dB gain and impedance bandwidth of 43.4 % (56-87 GHz) for |S11| < -10 dB and an average gain of 8.2 dBi is designed. A detailed operating principle is presented. Based on the proposed element, an SIW based 1x8 array is constructed, whose beam-shape is synthesized by amplitude tapering according to Taylor distribution to reduce the sidelobe level. Moreover, a four-layered 4x4 cavity-backed antenna array with a low-loss full-corporate SIW feed network is implemented for gain and aperture efficiency enhancement. The measured results exhibited a bandwidth of 38.4 % (55.2-81.4 GHz) for |S11| < -10 dB and a gain of 20.5 dBi. A single-layer right-angle transition between SIW and air-filled WR15 waveguide along with an equivalent circuit model is introduced and used to measure the performance of both proposed linear and planar arrays. Thirdly, two 1-D scanning multi-beam array designs based on SIW technology, at 60 GHz, have been presented. The first design is a compact multi-beam scanning 4x4 slot antenna array with broadside radiation. The BFN is implemented using a dual-layer 4x4 Butler matrix, where the 450 and 00 phase shifters are designed on a separate layer with different permittivity, resulting in a significant size reduction compared to a conventional single layer. A detailed theoretical analysis, principle of operation and the circuit-model of the proposed phase shifter have been discussed, showing less desperation characteristics compared to ordinary phase shifters. The measured results show an azimuthal coverage of 1210. The second design is a wideband high gain multi-beam tapered slot antenna array with end-fire radiation. An SIW Butler matrix with a modified hybrid crossover is used as a BFN. The fabricated prototype exhibits a field of view of 970 in the azimuthal plane, with measured gain ranges from 12.7 to 15.6 dBi. Lastly, a novel three-layered SIW-fed cavity-backed linearly polarized (LP) patch antenna element is presented, covering a bandwidth of 36.2 % (53-76.4 GHz) with a flat gain ranging from 7.6 to 8.2 dBi. A compact two-layered beam forming network is designed with a size reduction of 28 % compared to a standard one-layered BFN without affecting its s-parameters. The results show that the impedance bandwidth is 31.1 % (51.5-70.5 GHz) for |S11|<-16 dB with an average insertion loss of 1.3 dB. The proposed antenna element and BFN are employed to form a compact 2x2 multibeam array at 60 GHz for 2-D scanning applications. The array shows a bandwidth better than 27 % with a radiation gain of up to 12.4 dBi and radiation efficiency of 80%. The multi-beam array features four tilted beams at 330 from a boresight direction with 450, 1350, 2250 and 3150 in azimuth directions, i.e., on e beam in each quadrant

    Investigations on some compact wideband fractal antennas

    Get PDF
    Today’s small handheld and other portable devices challenge antenna designers for ultrathin, and high performances that have the ability to meet multi standards. In the context, fractal geometries have significant role for antenna applications with varying degree of success in improving antenna characteristics. In this thesis, we have investigated several wideband fractal monopole antennas. This work starts with design and implementation of Koch fractal, hybrid fractal, sectoral fractal, semi-circle fractal monopole antennas with discussion, covering their operations, electrical behavior and performances. The performances of these designs have been studied using standard simulation tools used in industry/academia and are experimentally verified. Frequency reconfigurable Koch snowflake fractal monopole antenna is also introduced. The present antenna can be used as an array element and has a wideband frequency of operation. A square Sierpinski monopole antenna has been designed, which is suitable for use in indoor UWB radio system and outdoor base station communication systems. Technique for obtaining a band stop function in the 5-6 GHz frequency band is numerically and experimentally presented. In addition to examining the performance of UWB system, the transfer function and waveform distortion are discussed. Finally, fractal antenna for array with MIMO environment is developed for mobile communication devices. Aim of this work is to achieve the acceptable performances in terms of isolation, envelope correlation coefficient, capacity loss, radiation patterns and efficiency. Furthermore, a wideband feed network prototype based on a modified Wilkinson power divider is designed. The designed feed network has been used in constructing 2-element and 4-element linear antenna arrays for high gain. This research work has addressed the effectiveness of fractal geometries in antenna and to bring-out the true advantages of their in antenna engineering

    Rectenna de doble banda para la captación de energía inalámbrica en las bandas de 2.40 GHz y 5.38 GHz

    Get PDF
    The objective of this study, reflected in this document, was to implement a rectenna for 2.45 GHz and 5.38 GHz wireless local area applications. For this purpose, the antenna dimensions were set to 18 mm × 44 mm, which is simulated using the optimization software CST Studio, manufactured on FR4 substrate with a thickness of 1.6 mm, where the conductive material has a thickness of 0.035 mm. Likewise, the rectangular slot technique was used to improve the bandwidth of the antenna; this technique consists of inserting slots in the structure to modify the displacement of the surface current. The above presented a gain of 2.49 dB at the 2.45 GHz frequency and 4.01 dB at the 5.38 GHz frequency. The proposed antenna for RF energy harvesting applications exhibits a dipole type radiation pattern, which enhances the capture of RF energy from various directions. The triple slotted-band rectifier with T-shaped impedance matching network was designed in FR4, using a Schotkky HSMS-286C diode for AC to DC RF control switching. A tp-link TL-WR940N wireless router was used as the RF emitting source at 30 cm separation between it and the proposed rectenna. The DC output of the rectenna is 3 volts with a generated signal power of 20 dBm at 2.4 GHz. The low-cost rectenna can be used for power-charging applications in the Internet of things (IoT) systems.El objetivo de este estudio, plasmado en este documento, fue implementar una rectenna para aplicaciones de área local inalámbrica 2.45 GHz y 5.38 GHz. Para ello, se estableció que las dimensiones de la antena fueran de 18 mm × 44 mm, la cual se simula mediante el software de optimización CST Studio, fabricada en sustrato FR4 con grosor de 1.6 mm, donde el material conductor posee un espesor de 0.035 mm. Asimismo, se utilizó la técnica de ranuras rectangulares para mejorar el ancho de banda de la antena; esta técnica consiste en insertar ranuras en la estructura con el fin de modificar el desplazamiento de la corriente de superficie. Lo anterior presentó una ganancia de 2.49 dB en la frecuencia de 2.45 GHz y de 4.01 dB en la frecuencia de 5.38 GHz. La antena propuesta para aplicaciones de recolección de energía de RF exhibe un patrón de radiación tipo dipolo, el cual mejora la captura de energía de RF desde varias direcciones. El rectificador de triple banda ranurada con red de adaptación de impedancia en forma de T se diseñó en FR4, utilizando un diodo Schotkky HSMS-286C para el cambio de control de RF AC a DC. Como fuente emisora de RF se empleó un enrutador inalámbrico tp-link TL-WR940N a una distancia de 30 cm de separación entre este y la rectenna propuesta. La salida de corriente continua de la rectenna es de 3 voltios con una potencia de señal generada de 20 dBm a 2.4 GHz. La rectenna de bajo coste puede ser utilizada para aplicaciones de carga de energía en sistemas de la internet de las cosas (IoT)
    corecore