19 research outputs found

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions

    Memory lower bounds for deterministic self-stabilization

    Full text link
    In the context of self-stabilization, a \emph{silent} algorithm guarantees that the register of every node does not change once the algorithm has stabilized. At the end of the 90's, Dolev et al. [Acta Inf. '99] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent algorithm must use a memory of Ω(log⁥n)\Omega(\log n) bits per register in nn-node networks. Similarly, Korman et al. [Dist. Comp. '07] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning trees (MST), every silent algorithm must use a memory of Ω(log⁥2n)\Omega(\log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for general algorithms, also established at the end of the 90's, is due to Beauquier et al.~[PODC '99] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing a tight lower bound of Θ(log⁡Δ+log⁥log⁥n)\Theta(\log \Delta+\log \log n) bits per register for self-stabilizing algorithms solving (Δ+1)(\Delta+1)-coloring or constructing a spanning tree in networks of maximum degree~Δ\Delta. The lower bound Ω(log⁥log⁥n)\Omega(\log \log n) bits per register also holds for leader election

    Optimal Space Lower Bound for Deterministic Self-Stabilizing Leader Election Algorithms

    Get PDF
    Given a boolean predicate ? on labeled networks (e.g., proper coloring, leader election, etc.), a self-stabilizing algorithm for ? is a distributed algorithm that can start from any initial configuration of the network (i.e., every node has an arbitrary value assigned to each of its variables), and eventually converge to a configuration satisfying ?. It is known that leader election does not have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for some networks, some of their nodes must have registers whose sizes grow with the size n of the networks. On the other hand, it is also known that leader election can be solved by a deterministic self-stabilizing algorithm using registers of O(log log n) bits per node in any n-node bounded-degree network. We show that this latter space complexity is optimal. Specifically, we prove that every deterministic self-stabilizing algorithm solving leader election must use ?(log log n)-bit per node registers in some n-node networks. In addition, we show that our lower bounds go beyond leader election, and apply to all problems that cannot be solved by anonymous algorithms

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(log⁡2 ⁣n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(log⁡2 ⁣n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(log⁡n⋅s)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(log⁡n)O(\log n) for an nn-approximation, to memory O(log⁡2 ⁣n)O(\log^2\!n) for exact solutions, with for example memory O(log⁡nlog⁡log⁡n)O(\log n\log\log n) for a 2-approximation

    Algorithme Auto-Stabilisant Compact d'Election pour les Graphes Arbitraires

    Get PDF
    International audienceNous prĂ©sentons le premier algorithme auto-stabilisant d'ÂŽ election pour les rĂ©seaux de topologie arbitraire dont la complexitĂ© en espace est de O(max{log ∆, log log n}) bits par noeud, o` u n est la taille du rĂ©seau et ∆ son degrĂ©. Cette complexitĂ© en espace est sous-logarithmique en n, tant que ∆ = n o(1)

    On the Limits and Practice of Automatically Designing Self-Stabilization

    Get PDF
    A protocol is said to be self-stabilizing when the distributed system executing it is guaranteed to recover from any fault that does not cause permanent damage. Designing such protocols is hard since they must recover from all possible states, therefore we investigate how feasible it is to synthesize them automatically. We show that synthesizing stabilization on a fixed topology is NP-complete in the number of system states. When a solution is found, we further show that verifying its correctness on a general topology (with any number of processes) is undecidable, even for very simple unidirectional rings. Despite these negative results, we develop an algorithm to synthesize a self-stabilizing protocol given its desired topology, legitimate states, and behavior. By analogy to shadow puppetry, where a puppeteer may design a complex puppet to cast a desired shadow, a protocol may need to be designed in a complex way that does not even resemble its specification. Our shadow/puppet synthesis algorithm addresses this concern and, using a complete backtracking search, has automatically designed 4 new self-stabilizing protocols with minimal process space requirements: 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, 3-state token passing on bidirectional chains, and 4-state orientation on daisy chains

    Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative

    No full text
    International audienceThis paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the solution is required to be silent (i.e., when the state of each process remains fixed from some point in time during any execution), there exists a lower bound of Ω(log n) bits of memory per participating node , where n denotes the number of nodes in the system. This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(log log n) memory bits per node, and stabilizes in O(n log 2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, it assumes an execution model that is used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) does not need to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides weak fairness, is assumed. Our result shows that, perhaps surprisingly, silence can be traded for an exponential decrease in memory space without significantly increasing stabilization time or introducing restrictive assumptions. * A preliminary version of this paper has appeared in [12, 13]. † Additional support from the ANR project IRIS

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore