110 research outputs found

    Analysis of Product Architectures of Pin Array Technologies for Tactile Displays

    Get PDF
    Refreshable tactile displays based on pin array technologies have a significant impact on the education of children with visual impairments, but they are prohibitively expensive. To better understand their design and the reason for the high cost, we created a database and analyzed the product architectures of 67 unique pin array technologies from literature and patents. We qualitatively coded their functional elements and analyzed the physical parts that execute the functions. Our findings highlight that pin array surfaces aim to achieve three key functions, i.e., raise and lower pins, lock pins, and create a large array. We also contribute a concise morphological chart that organises the various mechanisms for these three functions. Based on this, we discuss the reasons for the high cost and complexity of these surface haptic technologies and infer why larger displays and more affordable devices are not available. Our findings can be used to design new mechanisms for more affordable and scalable pin array display systems

    Designing a New Tactile Display Technology and its Disability Interactions

    Get PDF
    People with visual impairments have a strong desire for a refreshable tactile interface that can provide immediate access to full page of Braille and tactile graphics. Regrettably, existing devices come at a considerable expense and remain out of reach for many. The exorbitant costs associated with current tactile displays stem from their intricate design and the multitude of components needed for their construction. This underscores the pressing need for technological innovation that can enhance tactile displays, making them more accessible and available to individuals with visual impairments. This research thesis delves into the development of a novel tactile display technology known as Tacilia. This technology's necessity and prerequisites are informed by in-depth qualitative engagements with students who have visual impairments, alongside a systematic analysis of the prevailing architectures underpinning existing tactile display technologies. The evolution of Tacilia unfolds through iterative processes encompassing conceptualisation, prototyping, and evaluation. With Tacilia, three distinct products and interactive experiences are explored, empowering individuals to manually draw tactile graphics, generate digitally designed media through printing, and display these creations on a dynamic pin array display. This innovation underscores Tacilia's capability to streamline the creation of refreshable tactile displays, rendering them more fitting, usable, and economically viable for people with visual impairments

    Quantitative Tactile Examination Using Shape Memory Alloy Actuators for the Early Detection of Diabetic Neuropathy

    Get PDF
    Diabetic neuropathy (DPN) is asymptomatic in its early phases but can cause serious complications as it progresses. Most DPN tests are cumbersome and produce only qualitative assessments, and simpler approaches that yield quantitative results are needed. Techniques that allow patients to perform examinations themselves would be especially valuable. In this study, we focused on quantifying the decline in tactile sensation associated with DPN and developed a measurement device that used a thin shape memory alloy (SMA) wire as the actuator. An ON/OFF pulse current caused the wire to shrink and expand. This vibration was amplified by a round-headed pin, allowing even DPN patients with reduced tactile sensitivity to detect the stimuli generated when lightly touching the pin with their fingertips. The tactile stimuli were ranked into 30 levels of intensity. A key advantage of the device is that it can be used by patients themselves, returning quantified results within minutes. Although developed for DPN, the method can be applied to the detection of peripheral neuropathy in general

    A reconfigurable tactile display based on polymer MEMS technology

    Get PDF
    This research focuses on the development of polymer microfabrication technologies for the realization of two major components of a pneumatic tactile display: a microactuator array and a complementary microvalve (control) array. The concept, fabrication, and characterization of a kinematically-stabilized polymeric microbubble actuator (¡°endoskeletal microbubble actuator¡±) were presented. A systematic design and modeling procedure was carried out to generate an optimized geometry of the corrugated diaphragm to satisfy membrane deflection, force, and stability requirements set forth by the tactile display goals. A refreshable Braille cell as a tactile display prototype has been developed based on a 2x3 endoskeletal microbubble array and an array of commercial valves. The prototype can provide both a static display (which meets the displacement and force requirement of a Braille display) and vibratory tactile sensations. Along with the above capabilities, the device was designed to meet the criteria of lightness and compactness to permit portable operation. The design is scalable with respect to the number of tactile actuators while still being simple to fabricate. In order to further reduce the size and cost of the tactile display, a microvalve array can be integrated into the tactile display system to control the pneumatic fluid that actuates the microbubble actuator. A piezoelectrically-driven and hydraulically-amplified polymer microvalve has been designed, fabricated, and tested. An incompressible elastomer was used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. The function of the microvalve as an on-off switch for a pneumatic microbubble tactile actuator was demonstrated. To further reduce the cost of the microvalve, a laterally-stacked multilayer PZT actuator has been fabricated using diced PZT multilayer, high aspect ratio SU-8 photolithography, and molding of electrically conductive polymer composite electrodes.Ph.D.Committee Chair: Allen,Mark; Committee Member: Bucknall,David; Committee Member: Book,Wayne; Committee Member: Griffin,Anselm; Committee Member: Yao,Donggan

    A Compact Modular Soft Surface With Reconfigurable Shape and Stiffness

    Get PDF
    A variety of reconfigurable surface devices, utilizing large numbers of actuated physical pixels to produce discretized 3D contours, have been developed for different purposes in research and industry. The difficulty of integrating many actuators in close configuration has limited the DoF and resolution and performance of existing devices. Utilizing vacuum power and soft material actuators, we have developed a soft reconfigurable surface (SRS) with multi-modal control and performance capabilities. The SRS is comprised of a square grid array of linear vacuum-powered soft pneumatic actuators (linear V-SPAs), built into plug-and-play modules which enable the arrangement, consolidation, and control of many DoF. In addition to the practical benefits of system integration, this architecture facilitates the construction of customized assemblies with an overall compact form factor. A series of experiments is performed to illustrate and validate the versatility of the SRS for achieving diverse tasks including force controlled modulation of interface pressure through integrated sensors, lateral manipulation of a variety of objects, static and dynamic shape and pattern generation for haptic interaction, and variable surface stiffness tuning. This SRS concept is scalable, space efficient and features diverse functional potential. This will extend the utility and accessibility of tangible robotic interfaces for future applications from industrial to home and personal use

    Development of a Tactile Thimble for Augmented and Virtual Reality Applications

    Get PDF
    The technologies that have gained a renewed interest during the recent years are Virtual Reality (VR) and Augmented Reality (AR), as they become more accessible and affordable for mass-production. The input device which allows us to interact with the virtual environment is a very crucial aspect. One of the main barriers to immerse ourselves in virtual reality is the lack of realistic feedback. The user has to almost rely entirely on visual feedback without any haptic feedback, and this increases the user's workload and decreases the performance. In this thesis, a functional demonstrator of a tactile feedback device which conveys compelling interactions with not just VR, but also AR is presented. The device is designed such that there is realistic feedback for virtual touches and least obstruction during contact of a real object in AR applications. New design principle of introducing small actuators allows the device to be compact and increases its portability. In contrast to actuators that are placed on the finger pad in most of the available input devices for VR, a tactile device with two actuators that are arranged laterally on the finger, so that the underside of the fingertip is free is proposed. The output from these actuators generate a tactile stimulus by stimulating a sense of touch, which helps the user to manipulate virtual objects. The actuators are designed to independently generate vibrations and this coupled tactile feedback enhances the stimulation resulting in a wide variety of stimulation patterns for the sense of touch. Preliminary experimental evaluation for design and location of actuators has been carried out to measure the vibration intensity. In addition, user experiments for design evaluation of the two actuators based on different vibration patterns have also been conducted

    A Novel Untethered Hand Wearable with Fine-Grained Cutaneous Haptic Feedback

    Get PDF
    During open surgery, a surgeon relies not only on the detailed view of the organ being operated upon and on being able to feel the fine details of this organ but also heavily relies on the combination of these two senses. In laparoscopic surgery, haptic feedback provides surgeons information on interaction forces between instrument and tissue. There have been many studies to mimic the haptic feedback in laparoscopic-related telerobotics studies to date. However, cutaneous feedback is mostly restricted or limited in haptic feedback-based minimally invasive studies. We argue that fine-grained information is needed in laparoscopic surgeries to study the details of the instrument’s end and can convey via cutaneous feedback. We propose an exoskeleton haptic hand wearable which consists of five 4 ⇥ 4 miniaturized fingertip actuators, 80 in total, to convey cutaneous feedback. The wearable is described as modular, lightweight, Bluetooth, and WiFi-enabled, and has a maximum power consumption of 830 mW. Software is developed to demonstrate rapid tactile actuation of edges; this allows the user to feel the contours in cutaneous feedback. Moreover, to demonstrate the idea as an object displayed on a flat monitor, initial tests were carried out in 2D. In the second phase, the wearable exoskeleton glove is then further developed to feel 3D virtual objects by using a virtual reality (VR) headset demonstrated by a VR environment. Two-dimensional and 3D objects were tested by our novel untethered haptic hand wearable. Our results show that untethered humans understand actuation in cutaneous feedback just in a single tapping with 92.22% accuracy. Our wearable has an average latency of 46.5 ms, which is much less than the 600 ms tolerable delay acceptable by a surgeon in teleoperation. Therefore, we suggest our untethered hand wearable to enhance multimodal perception in minimally invasive surgeries to naturally feel the immediate environments of the instruments
    • …
    corecore