128,358 research outputs found

    The gap between Gromov-vague and Gromov-Hausdorff-vague topology

    Full text link
    In Athreya, L\"ohr, Winter (2016), an invariance principle is stated for a class of strong Markov processes on tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then the processes converge in the sense of finite dimensional distributions. Further, if the underlying spaces converge Gromov-Hausdorff vaguely, then the processes converge weakly in path space. In this paper we systematically introduce and study the Gromov-vague and the Gromov-Hausdorff-vague topology on the space of equivalence classes of metric boundedly finite measure spaces. The latter topology is closely related to the Gromov-Hausdorff-Prohorov metric which is defined on different equivalence classes of metric measure spaces. We explain the necessity of these two topologies via several examples, and close the gap between them. That is, we show that convergence in Gromov-vague topology implies convergence in Gromov-Hausdorff-vague topology if and only if the so-called lower mass-bound property is satisfied. Furthermore, we prove and disprove Polishness of several spaces of metric measure spaces in the topologies mentioned above (summarized in Figure~1). As an application, we consider the Galton-Watson tree with critical offspring distribution of finite variance conditioned to not get extinct, and construct the so-called Kallenberg-Kesten tree as the weak limit in Gromov-Hausdorff-vague topology when the edge length are scaled down to go to zero

    A note on Gromov-Hausdorff-Prokhorov distance between (locally) compact measure spaces

    Get PDF
    We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a locally finite measure. We prove that this space with the extended Gromov-Hausdorff-Prokhorov metric is a Polish space. This generalization is needed to define L\'evy trees, which are (possibly unbounded) random real trees endowed with a locally finite measure

    An extension of disjunctive programming and its impact for compact tree formulations

    Full text link
    In the 1970's, Balas introduced the concept of disjunctive programming, which is optimization over unions of polyhedra. One main result of his theory is that, given linear descriptions for each of the polyhedra to be taken in the union, one can easily derive an extended formulation of the convex hull of the union of these polyhedra. In this paper, we give a generalization of this result by extending the polyhedral structure of the variables coupling the polyhedra taken in the union. Using this generalized concept, we derive polynomial size linear programming formulations (compact formulations) for a well-known spanning tree approximation of Steiner trees, for Gomory-Hu trees, and, as a consequence, of the minimum TT-cut problem (but not for the associated TT-cut polyhedron). Recently, Kaibel and Loos (2010) introduced a more involved framework called {\em polyhedral branching systems} to derive extended formulations. The most parts of our model can be expressed in terms of their framework. The value of our model can be seen in the fact that it completes their framework by an interesting algorithmic aspect.Comment: 17 page
    corecore