19 research outputs found

    Normalizer Circuits and Quantum Computation

    Full text link
    (Abridged abstract.) In this thesis we introduce new models of quantum computation to study the emergence of quantum speed-up in quantum computer algorithms. Our first contribution is a formalism of restricted quantum operations, named normalizer circuit formalism, based on algebraic extensions of the qubit Clifford gates (CNOT, Hadamard and π/4\pi/4-phase gates): a normalizer circuit consists of quantum Fourier transforms (QFTs), automorphism gates and quadratic phase gates associated to a set GG, which is either an abelian group or abelian hypergroup. Though Clifford circuits are efficiently classically simulable, we show that normalizer circuit models encompass Shor's celebrated factoring algorithm and the quantum algorithms for abelian Hidden Subgroup Problems. We develop classical-simulation techniques to characterize under which scenarios normalizer circuits provide quantum speed-ups. Finally, we devise new quantum algorithms for finding hidden hyperstructures. The results offer new insights into the source of quantum speed-ups for several algebraic problems. Our second contribution is an algebraic (group- and hypergroup-theoretic) framework for describing quantum many-body states and classically simulating quantum circuits. Our framework extends Gottesman's Pauli Stabilizer Formalism (PSF), wherein quantum states are written as joint eigenspaces of stabilizer groups of commuting Pauli operators: while the PSF is valid for qubit/qudit systems, our formalism can be applied to discrete- and continuous-variable systems, hybrid settings, and anyonic systems. These results enlarge the known families of quantum processes that can be efficiently classically simulated. This thesis also establishes a precise connection between Shor's quantum algorithm and the stabilizer formalism, revealing a common mathematical structure in several quantum speed-ups and error-correcting codes.Comment: PhD thesis, Technical University of Munich (2016). Please cite original papers if possible. Appendix E contains unpublished work on Gaussian unitaries. If you spot typos/omissions please email me at JLastNames at posteo dot net. Source: http://bit.ly/2gMdHn3. Related video talk: https://www.perimeterinstitute.ca/videos/toy-theory-quantum-speed-ups-based-stabilizer-formalism Posted on my birthda

    Full Issue

    Get PDF

    Helix-Hopes on Finite Hyperfields

    Get PDF
    Hyperstructure theory can overcome restrictions which ordinary algebraic structures have. A hyperproduct on non-square ordinary matrices can be defined by using the so called helix-hyperoperations. We study the helix-hyperstructures on the representations using ordinary fields. The related theory can be faced by defining the hyperproduct on the set of non square matrices. The main tools of the Hyperstructure Theory are the fundamental relations which connect the largest class of hyperstructures, the Hv-structures, with the corresponding classical ones. We focus on finite dimensional helix-hyperstructures and on small Hv-fields, as well.

    On power structures

    No full text
    In general, power structure of a structure A (with universe A) is an appropriate structure defined on the power set P(A). There are lot of papers concerning this topic in which power structures appear explicitly or implicitly. The aim of this paper is to give an overview of the results that are interesting from the universal-algebraic point of view

    Neutrosophic Sets and Systems, Vol. 36, 2020

    Get PDF

    Collected Papers (on Neutrosophic Theory and Its Applications in Algebra), Volume IX

    Get PDF
    This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang

    Algebraic geometry over semi-structures and hyper-structures of characteristic one

    Get PDF
    In this thesis, we study algebraic geometry in characteristic one from the perspective of semirings and hyperrings. The thesis largely consists of three parts: (1) We develop the basic notions and several methods of algebraic geometry over semirings. We first construct a semi-scheme by directly generalizing the classical construction of a scheme, and prove that any semiring can be canonically realized as a semiring of global functions on an affine semischeme. We then develop Cech cohomology theory for semi-schemes, and show that the classical isomorphism is still valid for a semi-scheme. Finally, we introduce the notion of a valuation on a semiring, and prove that an analogue of an abstract curve by using the (suitably defined) function field Qmax(T) is homeomorphic to the projective line over the field with one element. (2) We develop algebraic geometry over hyperrings. The first motivation for this study arises from the following problem posed in [9]: if one follows the classical construction to define the hyper-scheme (X = SpecR,O_X), where R is a hyperring, then a canonical isomorphism R ≃ O_X(X) does not hold in general. By investigating algebraic properties of hyperrings (which include a construction of a quotient hyperring and Hilbert Nullstellensatz), we give a partial answer for their problem as follows: when R does not have a (multiplicative) zero-divisor, the canonical isomorphism R ≃ O_X(X) holds for a hyper-scheme (X = SpecR,OX). In other words, R can be realized as a hyperring of global functions on an affine hyper-scheme. We also give a (partial) affirmative answer to the following speculation posed by Connes and Consani in [7]: let A = k[T] or k[T, 1/T ], where k = Q or Fp. When k = Fp, the topological space SpecA is a hypergroup with a canonical hyper-operation ∗ induced from a coproduct of A. The similar statement holds with k = Q and SpecA\{δ}, where δ is the generic point (cf. [7, Theorems 7.1 and 7.13]). Connes and Consani expected that the similar result would be true for Chevalley group schemes. We prove that when X = SpecA is an affine algebraic group scheme over arbitrary field, then, together with a canonical hyper-operation ∗ on X introduced in [7], (X, ∗) becomes a slightly general (in a precise sense) object than a hypergroup. (3) We give a (partial) converse of S.Henry’s symmetrization procedure which produces a hypergroup from a semigroup in a canonical way (cf. [21]). Furthermore, via the symmetrization process, we connect the notions of (1) and (2), and prove that such a link is closely related with the notion of real prime ideals

    Extensions of Positive Definite Functions: Applications and Their Harmonic Analysis

    Full text link
    We study two classes of extension problems, and their interconnections: (i) Extension of positive definite (p.d.) continuous functions defined on subsets in locally compact groups GG; (ii) In case of Lie groups, representations of the associated Lie algebras La(G)La\left(G\right) by unbounded skew-Hermitian operators acting in a reproducing kernel Hilbert space (RKHS) HF\mathscr{H}_{F}. Why extensions? In science, experimentalists frequently gather spectral data in cases when the observed data is limited, for example limited by the precision of instruments; or on account of a variety of other limiting external factors. Given this fact of life, it is both an art and a science to still produce solid conclusions from restricted or limited data. In a general sense, our monograph deals with the mathematics of extending some such given partial data-sets obtained from experiments. More specifically, we are concerned with the problems of extending available partial information, obtained, for example, from sampling. In our case, the limited information is a restriction, and the extension in turn is the full positive definite function (in a dual variable); so an extension if available will be an everywhere defined generating function for the exact probability distribution which reflects the data; if it were fully available. Such extensions of local information (in the form of positive definite functions) will in turn furnish us with spectral information. In this form, the problem becomes an operator extension problem, referring to operators in a suitable reproducing kernel Hilbert spaces (RKHS). In our presentation we have stressed hands-on-examples. Extensions are almost never unique, and so we deal with both the question of existence, and if there are extensions, how they relate back to the initial completion problem.Comment: 235 pages, 42 figures, 7 tables. arXiv admin note: substantial text overlap with arXiv:1401.478

    Towers of recollement and bases for diagram algebras: planar diagrams and a little beyond

    Get PDF
    The recollement approach to the representation theory of sequences of algebras is extended to pass basis information directly through the globalisation functor. The method is hence adapted to treat sequences that are not necessarily towers by inclusion, such as symplectic blob algebras (diagram algebra quotients of the type-\hati{C} Hecke algebras). By carefully reviewing the diagram algebra construction, we find a new set of functors interrelating module categories of ordinary blob algebras (diagram algebra quotients of the type-B{B} Hecke algebras) at {\em different} values of the algebra parameters. We show that these functors generalise to determine the structure of symplectic blob algebras, and hence of certain two-boundary Temperley-Lieb algebras arising in Statistical Mechanics. We identify the diagram basis with a cellular basis for each symplectic blob algebra, and prove that these algebras are quasihereditary over a field for almost all parameter choices, and generically semisimple. (That is, we give bases for all cell and standard modules.)Comment: 61 page

    Neutrosophic SuperHyperAlgebra and New Types of Topologies

    Get PDF
    In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology
    corecore