66 research outputs found

    Representing quantum structures as near semirings

    Get PDF
    In this article, we introduce the notion of near semiring with involution. Generalizing the theory of semirings we aim at represent quantum structures, such as basic algebras and orthomodular lattices, in terms of near semirings with involution. In particular, after discussing several properties of near semirings, we introduce the so-called Ɓukasiewicz near semirings, as a particular case of near semirings, and we show that every basic algebra is representable as (precisely, it is term equivalent to) a near semiring. In the particular case in which a Ɓukasiewicz near semiring is also a semiring, we obtain as a corollary a representation of MV-algebras as semirings. Analogously, by introducing a particular subclass of Ɓukasiewicz near semirings, that we termed orthomodular near semirings, we obtain a representation of orthomodular lattices. In the second part of the article, we discuss several universal algebraic properties of Ɓukasiewicz near semirings and we show that the variety of involutive integral near semirings is a Church variety. This yields a neat equational characterization of central elements of this variety. As a byproduct of such, we obtain several direct decomposition theorems for this class of algebras

    Remarks on the order-theoretical and algebraic properties of quantum structures

    Get PDF
    This thesis is concerned with the analysis of common features and distinguishing traits of algebraic structures arising in the sharp as well as in the unsharp approaches to quan- tum theory both from an order-theoretical and an algebraic perspective. Firstly, we recall basic notions of order theory and universal algebra. Furthermore, we introduce fundamental concepts and facts concerning the algebraic structures we deal with, from orthomodular lattices to e↔ect algebras, MV algebras and their non-commutative gener- alizations. Finally, we present Basic algebras as a general framework in which (lattice) quantum structures can be studied from an universal algebraic perspective. Taking advantage of the categorical (term-)equivalence between Basic algebras and Lukasiewicz near semirings, in Chapter 3 we provide a structure theory for the lat- ter in order to highlight that, if turned into near-semirings, orthomodular lattices, MV algebras and Basic algebras determine ideals amenable of a common simple description. As a consequence, we provide a rather general Cantor-Bernstein Theorem for involutive left-residuable near semirings. In Chapter 4, we show that lattice pseudoe↔ect algebras, i.e. non-commutative gener- alizations of lattice e↔ect algebras can be represented as near semirings. One one side, this result allows the arithmetical treatment of pseudoe↔ect algebras as total structures; on the other, it shows that near semirings framework can be really seen as the common “ground” on which (commutative and non commutative) quantum structures can be studied and compared. In Chapter 5 we show that modular paraorthomodular lattices can be represented as semiring-like structures by first converting them into (left-) residuated structures. To this aim, we show that any modular bonded lattice A with antitone involution satisfying a strengthened form of regularity can be turned into a left-residuated groupoid. This condition turns out to be a sucient and necessary for a Kleene lattice to be equipped with a Boolean-like material implication. Finally, in order to highlight order theoretical peculiarities of orthomodular quantum structures, in Chapter 6 we weaken the notion of orthomodularity for posets by introduc- ing the concept of the generalized orthomodularity property (GO-property) expressed in terms of LU-operators. This seemingly mild generalization of orthomodular posets and its order theoretical analysis yields rather strong applications to e↔ect algebras, and orthomodular structures. Also, for several classes of orthoalgebras, the GO-property yields a completely order-theoretical characterization of the coherence law and, in turn, of proper orthoalgebras

    Near semirings and semirings with involution

    Get PDF

    Algebraic structures from quantum and fuzzy logics

    Get PDF
    This thesis concerns the wide research area of logic. In particular, the first part is devoted to analyze different kinds of relational systems (orthogonal and residuated), by investigating the properties of the algebras associated to them. The second part is focused on algebras of logic, in particular, the relationship between prominent quantum and fuzzy structures with certain semirings is proved. The last chapter concerns an application of group theory to some well known mathematical puzzles

    On the structure of balanced near semirings

    Get PDF

    Effect systems revisited—control-flow algebra and semantics

    Get PDF
    Effect systems were originally conceived as an inference-based program analysis to capture program behaviour—as a set of (representations of) effects. Two orthogonal developments have since happened. First, motivated by static analysis, effects were generalised to values in an algebra, to better model control flow (e.g. for may/must analyses and concurrency). Second, motivated by semantic questions, the syntactic notion of set- (or semilattice-) based effect system was linked to the semantic notion of monads and more recently to graded monads which give a more precise semantic account of effects. We give a lightweight tutorial explanation of the concepts involved in these two threads and then unify them via the notion of an effect-directed semantics for a control-flow algebra of effects. For the case of effectful programming with sequencing, alternation and parallelism—illustrated with music—we identify a form of graded joinads as the appropriate structure for unifying effect analysis and semantics
    • 

    corecore