1,289 research outputs found

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    A multiplex connectivity map of valence-arousal emotional model

    Get PDF
    high number of studies have already demonstrated an electroencephalography (EEG)-based emotion recognition system with moderate results. Emotions are classified into discrete and dimensional models. We focused on the latter that incorporates valence and arousal dimensions. The mainstream methodology is the extraction of univariate measures derived from EEG activity from various frequencies classifying trials into low/high valence and arousal levels. Here, we evaluated brain connectivity within and between brain frequencies under the multiplexity framework. We analyzed an EEG database called DEAP that contains EEG responses to video stimuli and users’ emotional self-assessments. We adopted a dynamic functional connectivity analysis under the notion of our dominant coupling model (DoCM). DoCM detects the dominant coupling mode per pair of EEG sensors, which can be either within frequencies coupling (intra) or between frequencies coupling (cross-frequency). DoCM revealed an integrated dynamic functional connectivity graph (IDFCG) that keeps both the strength and the preferred dominant coupling mode. We aimed to create a connectomic mapping of valence-arousal map via employing features derive from IDFCG. Our results outperformed previous findings succeeding to predict in a high accuracy participants’ ratings in valence and arousal dimensions based on a flexibility index of dominant coupling modes

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    Affect-based indexing and retrieval of multimedia data

    Get PDF
    Digital multimedia systems are creating many new opportunities for rapid access to content archives. In order to explore these collections using search, the content must be annotated with significant features. An important and often overlooked aspect o f human interpretation o f multimedia data is the affective dimension. The hypothesis o f this thesis is that affective labels o f content can be extracted automatically from within multimedia data streams, and that these can then be used for content-based retrieval and browsing. A novel system is presented for extracting affective features from video content and mapping it onto a set o f keywords with predetermined emotional interpretations. These labels are then used to demonstrate affect-based retrieval on a range o f feature films. Because o f the subjective nature o f the words people use to describe emotions, an approach towards an open vocabulary query system utilizing the electronic lexical database WordNet is also presented. This gives flexibility for search queries to be extended to include keywords without predetermined emotional interpretations using a word-similarity measure. The thesis presents the framework and design for the affectbased indexing and retrieval system along with experiments, analysis, and conclusions
    corecore