4,866 research outputs found

    Towards designing robust coupled networks

    Get PDF
    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy

    Network robustness improvement via long-range links

    Get PDF
    Abstract Many systems are today modelled as complex networks, since this representation has been proven being an effective approach for understanding and controlling many real-world phenomena. A significant area of interest and research is that of networks robustness, which aims to explore to what extent a network keeps working when failures occur in its structure and how disruptions can be avoided. In this paper, we introduce the idea of exploiting long-range links to improve the robustness of Scale-Free (SF) networks. Several experiments are carried out by attacking the networks before and after the addition of links between the farthest nodes, and the results show that this approach effectively improves the SF network correct functionalities better than other commonly used strategies

    Towards real-world complexity: an introduction to multiplex networks

    Full text link
    Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.Comment: 20 pages, 10 figure

    Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates

    Full text link
    As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as in quorum sensing, to achieve mutualism. Here, to achieve stable division of labor, three properties are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells, by achieving division of labor. Third, this cell aggregate is robust in the number distribution of differentiated cell types. We here address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact via chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks with limited resources and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural result of interacting cells with resource limitation, and is consistent with the observed behaviors and forms of several aggregates of unicellular organisms.Comment: 14 pages, 6 figure

    Research needs towards a resilient community: Vulnerability reduction, infrastructural systems model, loss assessment, resilience-based design and emergency management

    Get PDF
    Most of the literature on resilience is devoted to its assessment. It seems time to move from analysis to design, to develop the tools needed to enhance resilience. Resilience enhancement, a close relative of the less fashionable risk mitigation, adds to the latter, at least in the general perception, a systemic dimension. Resilience is often paired with community, and the latter is a system. This chapter therefore discusses strategies to enhance resilience, endorses one of prevention rather than cure, and focuses in the remainder on the role played by systemic analysis, i.e. the analysis of the built environment modelled beyond a simple collection of physical assets, with due care to the associated interdependencies. Research needs are identified and include challenges in network modelling, the replacement of generic fragility curves for components, how to deal with evolving state of information
    corecore