538 research outputs found

    Linking genes to literature: text mining, information extraction, and retrieval applications for biology

    Get PDF
    Efficient access to information contained in online scientific literature collections is essential for life science research, playing a crucial role from the initial stage of experiment planning to the final interpretation and communication of the results. The biological literature also constitutes the main information source for manual literature curation used by expert-curated databases. Following the increasing popularity of web-based applications for analyzing biological data, new text-mining and information extraction strategies are being implemented. These systems exploit existing regularities in natural language to extract biologically relevant information from electronic texts automatically. The aim of the BioCreative challenge is to promote the development of such tools and to provide insight into their performance. This review presents a general introduction to the main characteristics and applications of currently available text-mining systems for life sciences in terms of the following: the type of biological information demands being addressed; the level of information granularity of both user queries and results; and the features and methods commonly exploited by these applications. The current trend in biomedical text mining points toward an increasing diversification in terms of application types and techniques, together with integration of domain-specific resources such as ontologies. Additional descriptions of some of the systems discussed here are available on the internet

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    A history and theory of textual event detection and recognition

    Get PDF

    Machine Learning Methods for Finding Textual Features of Depression from Publications

    Get PDF
    Depression is a common but serious mood disorder. In 2015, WHO reports about 322 million people were living with some form of depression, which is the leading cause of ill health and disability worldwide. In USA, there are approximately 14.8 million American adults (about 6.7% percent of the US population) affected by major depressive disorder. Most individuals with depression are not receiving adequate care because the symptoms are easily neglected and most people are not even aware of their mental health problems. Therefore, a depression prescreen system is greatly beneficial for people to understand their current mental health status at an early stage. Diagnosis of depressions, however, is always extremely challenging due to its complicated, many and various symptoms. Fortunately, publications have rich information about various depression symptoms. Text mining methods can discover the different depression symptoms from literature. In order to extract these depression symptoms from publications, machine learning approaches are proposed to overcome four main obstacles: (1) represent publications in a mathematical form; (2) get abstracts from publications; (3) remove the noisy publications to improve the data quality; (4) extract the textual symptoms from publications. For the first obstacle, we integrate Word2Vec with LDA by either representing publications with document-topic distance distributions or augmenting the word-to-topic and word-to-word vectors. For the second obstacle, we calculate a document vector and its paragraph vectors by aggregating word vectors from Word2Vec. Feature vectors are calculated by clustering word vectors. Selected paragraphs are decided by the similarity of their distances to feature vectors and the document vector to feature vectors. For the third obstacle, one class SVM model is trained by vectored publications, and outlier publications are excluded by distance measurements. For the fourth obstacle, we fully evaluate the possibility of a word as a symptom according to its frequency in entire publications, and local relationship with its surrounding words in a publication
    corecore