10,424 research outputs found

    Co-Morbidity Exploration on Wearables Activity Data Using Unsupervised Pre-training and Multi-Task Learning

    Full text link
    Physical activity and sleep play a major role in the prevention and management of many chronic conditions. It is not a trivial task to understand their impact on chronic conditions. Currently, data from electronic health records (EHRs), sleep lab studies, and activity/sleep logs are used. The rapid increase in the popularity of wearable health devices provides a significant new data source, making it possible to track the user's lifestyle real-time through web interfaces, both to consumer as well as their healthcare provider, potentially. However, at present there is a gap between lifestyle data (e.g., sleep, physical activity) and clinical outcomes normally captured in EHRs. This is a critical barrier for the use of this new source of signal for healthcare decision making. Applying deep learning to wearables data provides a new opportunity to overcome this barrier. To address the problem of the unavailability of clinical data from a major fraction of subjects and unrepresentative subject populations, we propose a novel unsupervised (task-agnostic) time-series representation learning technique called act2vec. act2vec learns useful features by taking into account the co-occurrence of activity levels along with periodicity of human activity patterns. The learned representations are then exploited to boost the performance of disorder-specific supervised learning models. Furthermore, since many disorders are often related to each other, a phenomenon referred to as co-morbidity, we use a multi-task learning framework for exploiting the shared structure of disorder inducing life-style choices partially captured in the wearables data. Empirical evaluation using actigraphy data from 4,124 subjects shows that our proposed method performs and generalizes substantially better than the conventional time-series symbolic representational methods and task-specific deep learning models

    Multimodal Clustering for Community Detection

    Full text link
    Multimodal clustering is an unsupervised technique for mining interesting patterns in nn-adic binary relations or nn-mode networks. Among different types of such generalized patterns one can find biclusters and formal concepts (maximal bicliques) for 2-mode case, triclusters and triconcepts for 3-mode case, closed nn-sets for nn-mode case, etc. Object-attribute biclustering (OA-biclustering) for mining large binary datatables (formal contexts or 2-mode networks) arose by the end of the last decade due to intractability of computation problems related to formal concepts; this type of patterns was proposed as a meaningful and scalable approximation of formal concepts. In this paper, our aim is to present recent advance in OA-biclustering and its extensions to mining multi-mode communities in SNA setting. We also discuss connection between clustering coefficients known in SNA community for 1-mode and 2-mode networks and OA-bicluster density, the main quality measure of an OA-bicluster. Our experiments with 2-, 3-, and 4-mode large real-world networks show that this type of patterns is suitable for community detection in multi-mode cases within reasonable time even though the number of corresponding nn-cliques is still unknown due to computation difficulties. An interpretation of OA-biclusters for 1-mode networks is provided as well

    Hyperbox based machine learning algorithms: A comprehensive survey

    Full text link
    With the rapid development of digital information, the data volume generated by humans and machines is growing exponentially. Along with this trend, machine learning algorithms have been formed and evolved continuously to discover new information and knowledge from different data sources. Learning algorithms using hyperboxes as fundamental representational and building blocks are a branch of machine learning methods. These algorithms have enormous potential for high scalability and online adaptation of predictors built using hyperbox data representations to the dynamically changing environments and streaming data. This paper aims to give a comprehensive survey of literature on hyperbox-based machine learning models. In general, according to the architecture and characteristic features of the resulting models, the existing hyperbox-based learning algorithms may be grouped into three major categories: fuzzy min-max neural networks, hyperbox-based hybrid models, and other algorithms based on hyperbox representations. Within each of these groups, this paper shows a brief description of the structure of models, associated learning algorithms, and an analysis of their advantages and drawbacks. Main applications of these hyperbox-based models to the real-world problems are also described in this paper. Finally, we discuss some open problems and identify potential future research directions in this field.Comment: 7 figure

    Learning Hidden Structures with Relational Models by Adequately Involving Rich Information in A Network

    Full text link
    Effectively modelling hidden structures in a network is very practical but theoretically challenging. Existing relational models only involve very limited information, namely the binary directional link data, embedded in a network to learn hidden networking structures. There is other rich and meaningful information (e.g., various attributes of entities and more granular information than binary elements such as "like" or "dislike") missed, which play a critical role in forming and understanding relations in a network. In this work, we propose an informative relational model (InfRM) framework to adequately involve rich information and its granularity in a network, including metadata information about each entity and various forms of link data. Firstly, an effective metadata information incorporation method is employed on the prior information from relational models MMSB and LFRM. This is to encourage the entities with similar metadata information to have similar hidden structures. Secondly, we propose various solutions to cater for alternative forms of link data. Substantial efforts have been made towards modelling appropriateness and efficiency, for example, using conjugate priors. We evaluate our framework and its inference algorithms in different datasets, which shows the generality and effectiveness of our models in capturing implicit structures in networks

    Modelling Interaction of Sentence Pair with coupled-LSTMs

    Full text link
    Recently, there is rising interest in modelling the interactions of two sentences with deep neural networks. However, most of the existing methods encode two sequences with separate encoders, in which a sentence is encoded with little or no information from the other sentence. In this paper, we propose a deep architecture to model the strong interaction of sentence pair with two coupled-LSTMs. Specifically, we introduce two coupled ways to model the interdependences of two LSTMs, coupling the local contextualized interactions of two sentences. We then aggregate these interactions and use a dynamic pooling to select the most informative features. Experiments on two very large datasets demonstrate the efficacy of our proposed architecture and its superiority to state-of-the-art methods.Comment: Submitted to IJCAI 201

    Gaussian processes with built-in dimensionality reduction: Applications in high-dimensional uncertainty propagation

    Full text link
    The prohibitive cost of performing Uncertainty Quantification (UQ) tasks with a very large number of input parameters can be addressed, if the response exhibits some special structure that can be discovered and exploited. Several physical responses exhibit a special structure known as an active subspace (AS), a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction with the AS represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold. The additional benefit of our probabilistic formulation is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one-dimensional granular system.Comment: 37 pages, 20 figure

    Data-driven Co-clustering Model of Internet Usage in Large Mobile Societies

    Full text link
    Design and simulation of future mobile networks will center around human interests and behavior. We propose a design paradigm for mobile networks driven by realistic models of users' on-line behavior, based on mining of billions of wireless-LAN records. We introduce a systematic method for large-scale multi-dimensional coclustering of web activity for thousands of mobile users at 79 locations. We find surprisingly that users can be consistently modeled using ten clusters with disjoint profiles. Access patterns from multiple locations show differential user behavior. This is the first study to obtain such detailed results for mobile Internet usage.Comment: 10 pages, 10 figure

    Topic segmentation via community detection in complex networks

    Full text link
    Many real systems have been modelled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting findings, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such representation fails in capturing other textual features, such as the organization in topics or subjects. In this context, we propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favours the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We have found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study semantical features of texts

    ModaNet: A Large-Scale Street Fashion Dataset with Polygon Annotations

    Full text link
    Understanding clothes from a single image has strong commercial and cultural impacts on modern societies. However, this task remains a challenging computer vision problem due to wide variations in the appearance, style, brand and layering of clothing items. We present a new database called ModaNet, a large-scale collection of images based on Paperdoll dataset. Our dataset provides 55,176 street images, fully annotated with polygons on top of the 1 million weakly annotated street images in Paperdoll. ModaNet aims to provide a technical benchmark to fairly evaluate the progress of applying the latest computer vision techniques that rely on large data for fashion understanding. The rich annotation of the dataset allows to measure the performance of state-of-the-art algorithms for object detection, semantic segmentation and polygon prediction on street fashion images in detail. The polygon-based annotation dataset has been released https://github.com/eBay/modanet, we also host the leaderboard at EvalAI: https://evalai.cloudcv.org/featured-challenges/136/overview.Comment: Accepted as a full paper for an oral presentation at ACM Multimedia 2018, Seoul, South Korea. ModaNet is only for non-commercial researc

    Towards Automated Factchecking: Developing an Annotation Schema and Benchmark for Consistent Automated Claim Detection

    Full text link
    In an effort to assist factcheckers in the process of factchecking, we tackle the claim detection task, one of the necessary stages prior to determining the veracity of a claim. It consists of identifying the set of sentences, out of a long text, deemed capable of being factchecked. This paper is a collaborative work between Full Fact, an independent factchecking charity, and academic partners. Leveraging the expertise of professional factcheckers, we develop an annotation schema and a benchmark for automated claim detection that is more consistent across time, topics and annotators than previous approaches. Our annotation schema has been used to crowdsource the annotation of a dataset with sentences from UK political TV shows. We introduce an approach based on universal sentence representations to perform the classification, achieving an F1 score of 0.83, with over 5% relative improvement over the state-of-the-art methods ClaimBuster and ClaimRank. The system was deployed in production and received positive user feedback.Comment: Accepted for ACM Digital Threats: Research and Practice (DTRAP
    • …
    corecore