2,015 research outputs found

    A social spider algorithm for global optimization

    Get PDF
    The growing complexity of real-world problems has motivated computer scientists to search for efficient problem-solving methods. Metaheuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. Inspired by the social spiders, we propose a novel social spider algorithm to solve global optimization problems. This algorithm is mainly based on the foraging strategy of social spiders, utilizing the vibrations on the spider web to determine the positions of preys. Different from the previously proposed swarm intelligence algorithms, we introduce a new social animal foraging strategy model to solve optimization problems. In addition, we perform preliminary parameter sensitivity analysis for our proposed algorithm, developing guidelines for choosing the parameter values. The social spider algorithm is evaluated by a series of widely used benchmark functions, and our proposed algorithm has superior performance compared with other state-of-the-art metaheuristics.postprin

    A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems

    Get PDF
    This chapter presents an overview of optimization techniques followed by a brief survey on several swarm-based natural inspired algorithms which were introduced in the last decade. These techniques were inspired by the natural processes of plants, foraging behaviors of insects and social behaviors of animals. These swam intelligent methods have been tested on various standard benchmark problems and are capable in solving a wide range of optimization issues including stochastic, robust and dynamic problems

    2013 Conference Abstracts: Annual Undergraduate Research Conference at the Interface of Biology and Mathematics

    Get PDF
    URC Schedule and Abstract Book for the Fifth Annual Undergraduate Research Conference at the Interface of Biology and Mathematics Date: November 16-17, 2013Plenary Speaker: Mariel Vazquez, Associate Professor of Mathematics at San Francisco State UniversityFeatured Speaker: Andrew Liebhold, Research Entomologist for the USDA Forest Servic

    Algorithms based on spider daddy long legs for finding the optimal route in securing mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are wireless networks that are subject to severe attacks, such as the black hole attack. One of the goals in the research is to find a method to prevent black hole attacks without decreasing network throughput or increasing routing overhead. The routing mechanism in define uses route requests (RREQs; for discovering routes) and route replies (RREPs; for receiving paths). However, this mechanism is vulnerable to attacks by malicious black hole nodes. The mechanism is developed to find the shortest secure path and to reduce overhead using the information that is available in the routing tables as an input to propose a more complex nature-inspired algorithm. The new method is called the Daddy Long-Legs Algorithm (PGO-DLLA), which modifies the standard AODV and optimizes the routing process. This method avoids dependency exclusively on the hop counts and destination sequence numbers (DSNs) that are exploited by malicious nodes in the standard AODV protocol. The experiment by performance metrics End-to-End delay and packet delivery ratio are compared in order to determine the best effort traffic. The results showed the PGO-DLLA improvement of the shortest and secure routing from black hole attack in MANET. In addition, the results indicate better performance than the related works algorithm with respect to all metrics excluding throughput which AntNet is best in routing when the pause time be more than 40 seconds. PGODLLA is able to improve the route discovery against the black hole attacks in AODV. Experiments in this thesis have shown that PGO-DLLA is able to reduce the normalized routing load, end-to-end delay, and packet loss and has a good throughput and packet delivery ratio when compared with the standard AODV protocol, BAODV protocol, and the current related protocols that enhance the routing security of the AODV protocols

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations

    Full text link
    In recent years, a great variety of nature- and bio-inspired algorithms has been reported in the literature. This algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.Comment: 76 pages, 6 figure

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)
    • …
    corecore