2,018 research outputs found

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    R2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections

    Full text link
    The influence of Deep Learning on image identification and natural language processing has attracted enormous attention globally. The convolution neural network that can learn without prior extraction of features fits well in response to the rapid iteration of Android malware. The traditional solution for detecting Android malware requires continuous learning through pre-extracted features to maintain high performance of identifying the malware. In order to reduce the manpower of feature engineering prior to the condition of not to extract pre-selected features, we have developed a coloR-inspired convolutional neuRal networks (CNN)-based AndroiD malware Detection (R2-D2) system. The system can convert the bytecode of classes.dex from Android archive file to rgb color code and store it as a color image with fixed size. The color image is input to the convolutional neural network for automatic feature extraction and training. The data was collected from Jan. 2017 to Aug 2017. During the period of time, we have collected approximately 2 million of benign and malicious Android apps for our experiments with the help from our research partner Leopard Mobile Inc. Our experiment results demonstrate that the proposed system has accurate security analysis on contracts. Furthermore, we keep our research results and experiment materials on http://R2D2.TWMAN.ORG.Comment: Verison 2018/11/15, IEEE BigData 2018, Seattle, WA, USA, Dec 10-13, 2018. (Accepted

    DL-Droid: Deep learning based android malware detection using real devices

    Get PDF
    open access articleThe Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page
    • …
    corecore