118,453 research outputs found

    Exploring Communities in Large Profiled Graphs

    Full text link
    Given a graph GG and a vertex q∈Gq\in G, the community search (CS) problem aims to efficiently find a subgraph of GG whose vertices are closely related to qq. Communities are prevalent in social and biological networks, and can be used in product advertisement and social event recommendation. In this paper, we study profiled community search (PCS), where CS is performed on a profiled graph. This is a graph in which each vertex has labels arranged in a hierarchical manner. Extensive experiments show that PCS can identify communities with themes that are common to their vertices, and is more effective than existing CS approaches. As a naive solution for PCS is highly expensive, we have also developed a tree index, which facilitate efficient and online solutions for PCS

    Connectivity of Random Annulus Graphs and the Geometric Block Model

    Get PDF
    We provide new connectivity results for {\em vertex-random graphs} or {\em random annulus graphs} which are significant generalizations of random geometric graphs. Random geometric graphs (RGG) are one of the most basic models of random graphs for spatial networks proposed by Gilbert in 1961, shortly after the introduction of the Erd\H{o}s-R\'{en}yi random graphs. They resemble social networks in many ways (e.g. by spontaneously creating cluster of nodes with high modularity). The connectivity properties of RGG have been studied since its introduction, and analyzing them has been significantly harder than their Erd\H{o}s-R\'{en}yi counterparts due to correlated edge formation. Our next contribution is in using the connectivity of random annulus graphs to provide necessary and sufficient conditions for efficient recovery of communities for {\em the geometric block model} (GBM). The GBM is a probabilistic model for community detection defined over an RGG in a similar spirit as the popular {\em stochastic block model}, which is defined over an Erd\H{o}s-R\'{en}yi random graph. The geometric block model inherits the transitivity properties of RGGs and thus models communities better than a stochastic block model. However, analyzing them requires fresh perspectives as all prior tools fail due to correlation in edge formation. We provide a simple and efficient algorithm that can recover communities in GBM exactly with high probability in the regime of connectivity

    Line Graphs of Weighted Networks for Overlapping Communities

    Get PDF
    In this paper, we develop the idea to partition the edges of a weighted graph in order to uncover overlapping communities of its nodes. Our approach is based on the construction of different types of weighted line graphs, i.e. graphs whose nodes are the links of the original graph, that encapsulate differently the relations between the edges. Weighted line graphs are argued to provide an alternative, valuable representation of the system's topology, and are shown to have important applications in community detection, as the usual node partition of a line graph naturally leads to an edge partition of the original graph. This identification allows us to use traditional partitioning methods in order to address the long-standing problem of the detection of overlapping communities. We apply it to the analysis of different social and geographical networks.Comment: 8 Pages. New title and text revisions to emphasise differences from earlier paper
    • …
    corecore