6,881 research outputs found

    Communications in cellular automata

    Full text link
    The goal of this paper is to show why the framework of communication complexity seems suitable for the study of cellular automata. Researchers have tackled different algorithmic problems ranging from the complexity of predicting to the decidability of different dynamical properties of cellular automata. But the difference here is that we look for communication protocols arising in the dynamics itself. Our work is guided by the following idea: if we are able to give a protocol describing a cellular automaton, then we can understand its behavior

    Reversibility in space, time, and computation: the case of underwater acoustic communications

    Full text link
    Time reversal of waves has been successfully used in communications, sensing and imaging for decades. The application in underwater acoustic communications is of our special interest, as it puts together a reversible process (allowing a reversible software or hardware realisation) and a reversible medium (allowing a reversible model of the environment). This work in progress report addresses the issues of modelling, analysis and implementation of acoustic time reversal from the reversible computation perspective. We show the potential of using reversible cellular automata for modelling and quantification of reversibility in the time reversal communication process. Then we present an implementation of time reversal hardware based on reversible circuits.Comment: 7 pages, RC 2018 Work in Progress pape

    Exploring the Dynamics of Fungal Cellular Automata

    Full text link
    Cells in a fungal hyphae are separated by internal walls (septa). The septa have tiny pores that allow cytoplasm flowing between cells. Cells can close their septa blocking the flow if they are injured, preventing fluid loss from the rest of filament. This action is achieved by special organelles called Woronin bodies. Using the controllable pores as an inspiration we advance one and two-dimensional cellular automata into Elementary fungal cellular automata (EFCA) and Majority fungal automata (MFA) by adding a concept of Woronin bodies to the cell state transition rules. EFCA is a cellular automaton where the communications between neighboring cells can be blocked by the activation of the Woronin bodies (Wb), allowing or blocking the flow of information (represented by a cytoplasm and chemical elements it carries) between them. We explore a novel version of the fungal automata where the evolution of the system is only affected by the activation of the Wb. We explore two case studies: the Elementary Fungal Cellular Automata (EFCA), which is a direct application of this variant for elementary cellular automata rules, and the Majority Fungal Automata (MFA), which correspond to an application of the Wb to two dimensional automaton with majority rule with Von Neumann neighborhood. By studying the EFCA model, we analyze how the 256 elementary cellular automata rules are affected by the activation of Wb in different modes, increasing the complexity on applied rule in some cases. Also we explore how a consensus over MFA is affected when the continuous flow of information is interrupted due to the activation of Woronin bodies.Comment: 31 pages, 30 figure

    Towards Physiology-Aware DASH: Bandwidth-Compliant Prioritized Clinical Multimedia Communication in Ambulances

    Full text link
    The ultimate objective of medical cyber-physical systems is to enhance the safety and effectiveness of patient care. To ensure safe and effective care during emergency patient transfer from rural areas to center tertiary hospitals, reliable and real-time communication is essential. Unfortunately, real-time monitoring of patients involves transmission of various clinical multimedia data including videos, medical images, and vital signs, which requires use of mobile network with high-fidelity communication bandwidth. However, the wireless networks along the roads in rural areas range from 4G to 2G to low speed satellite links, which poses a significant challenge to transmit critical patient information. In this paper, we present a bandwidth-compliant criticality-aware system for transmission of massive clinical multimedia data adaptive to varying bandwidths during patient transport. Model-based clinical automata are used to determine the criticality of clinical multimedia data. We borrow concepts from DASH, and propose physiology-aware adaptation techniques to transmit more critical clinical data with higher fidelity in response to changes in disease, clinical states, and bandwidth condition. In collaboration with Carle's ambulance service center, we develop a bandwidth profiler, and use it as proof of concept to support our experiments. Our preliminary evaluation results show that our solutions ensure that most critical patient's clinical data are communicated with higher fidelity.Comment: 15 pages, IEEE Transactions on Multimedia (TMM), 201

    Differentiable cellular automata

    Full text link
    We describe a class of cellular automata (CAs) that are end-to-end differentiable. DCAs interpolate the behavior of ordinary CAs through rules that act on distributions of states. The gradient of a DCA with respect to its parameters can be computed with an iterative propagation scheme that uses previously-computed gradients and values. Gradient-based optimization over DCAs could be used to find ordinary CAs with desired properties

    On the Use of Cellular Automata in Symmetric Cryptography

    Full text link
    In this work, pseudorandom sequence generators based on finite fields have been analyzed from the point of view of their cryptographic application. In fact, a class of nonlinear sequence generators has been modelled in terms of linear cellular automata. The algorithm that converts the given generator into a linear model based on automata is very simple and is based on the concatenation of a basic structure. Once the generator has been linearized, a cryptanalytic attack that exploits the weaknesses of such a model has been developed. Linear cellular structures easily model sequence generators with application in stream cipher cryptography.Comment: 25 pages, 0 figure

    Pseudorandom sequences in spread-spectrum communications generated by cellular automata

    Get PDF
    "Dynamical systems methods have been recently used in spread-spectrum digital communication systems. The expansion of the spectrum using a pseudorandom sequence with a higher frequency than the information signal is the key feature for its robustness against the signal traveling interference through the channel. In this work, we propose to generate pseudorandom sequences by employing cellular automata and we check these sequences have the necessary properties which are required in modern communication systems. The computed sequences obtained by the cellular automata are tested in a quadrature phase shift keying (QPSK) spread-spectrum communication system. The efficiency of the system is analyzed by computing the bit error rate under different signal to noise ratio conditions. These results are compared with systems that employ Golden code and other typical pseudorandom sequences.

    Ergodicity of PCA: Equivalence between Spatial and Temporal Mixing Conditions

    Full text link
    For a general attractive Probabilistic Cellular Automata on S Z d , we prove that the (time-) convergence towards equilibrium of this Markovian parallel dynamics, exponentially fast in the uniform norm, is equivalent to a condition (A). This condition means the exponential decay of the inuence from the boundary for the invariant measures of the system restricted to nite boxes. For a class of reversible PCA dynamics on {--1, +1} Z d , with a naturally associated Gibbsian potential φ\varphi, we prove that a (spatial-) weak mixing condition (WM) for φ\varphi implies the validity of the assumption (A); thus exponential (time-) ergodicity of these dynamics towards the unique Gibbs measure associated to φ\varphi holds. On some particular examples we state that exponential ergodicity holds as soon as there is no phase transition.Comment: in Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 200

    Fuzzy cellular model for on-line traffic simulation

    Full text link
    This paper introduces a fuzzy cellular model of road traffic that was intended for on-line applications in traffic control. The presented model uses fuzzy sets theory to deal with uncertainty of both input data and simulation results. Vehicles are modelled individually, thus various classes of them can be taken into consideration. In the proposed approach, all parameters of vehicles are described by means of fuzzy numbers. The model was implemented in a simulation of vehicles queue discharge process. Changes of the queue length were analysed in this experiment and compared to the results of NaSch cellular automata model.Comment: The original publication is available at http://www.springerlink.co

    Self-Organization in Traffic Lights: Evolution of Signal Control with Advances in Sensors and Communications

    Full text link
    Traffic signals are ubiquitous devices that first appeared in 1868. Recent advances in information and communications technology (ICT) have led to unprecedented improvements in such areas as mobile handheld devices (i.e., smartphones), the electric power industry (i.e., smart grids), transportation infrastructure, and vehicle area networks. Given the trend towards interconnectivity, it is only a matter of time before vehicles communicate with one another and with infrastructure. In fact, several pilots of such vehicle-to-vehicle and vehicle-to-infrastructure (e.g. traffic lights and parking spaces) communication systems are already operational. This survey of autonomous and self-organized traffic signaling control has been undertaken with these potential developments in mind. Our research results indicate that, while many sophisticated techniques have attempted to improve the scheduling of traffic signal control, either real-time sensing of traffic patterns or a priori knowledge of traffic flow is required to optimize traffic. Once this is achieved, communication between traffic signals will serve to vastly improve overall traffic efficiency
    • …
    corecore