49,033 research outputs found

    NASA ground communications

    Get PDF
    As part of the Communications Requirements and Constraints, NASA's two major Ground Data Networks were briefly described. The NASA Communication Network, called NASCOM, is the worldwide operational telecommunications system which interconnects as the tracking and telemetry acquisition sites, launch areas, mission and project control centers, data capture facilities, and network control centers in support of space flight. For the Space Station era, NASCOM plans are set for higher data rate service utilizing data packet switched technology. Increased use of fiber optics is expected in a much more diverse network topology. The second major ground network, the Program Support Communications Network (PSCN), interconnects all NASA Centers and NASA contractor locations for intercenter non-operation communications. The primary functions are to transport voice, video, data and facsimile information for intercenter coordination, and to provide user access to space science and applications data bases. For the Space Station era, PSCN plans address the significant increase in forecast requirements for science data distribution and access to the Numerical Aerodynamics Simulator, and increased use of the Video Teleconference System

    XTP for the NASA space station

    Get PDF
    The NASA Space Station is a truly international effort; therefore, its communications systems must conform to established international standards. Thus, NASA is requiring that each network-interface unit implement a full suite of ISO protocols. However, NASA is understandably concerned that a full ISO stack will not deliver performance consistent with the real-time demands of Space Station control systems. Therefore, as a research project, the suitability of the Xpress transfer protocol (XTP) is investigated along side a full ISO stack. The initial plans for implementing XTP and comparing its performance to ISO TP4 are described

    Space Station communications and tracking systems modeling and RF link simulation

    Get PDF
    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort

    Conceptual definition of a high voltage power supply test facility

    Get PDF
    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented

    Closing the Deep Space Communications Link with Commercial Assets

    Get PDF
    Growing commercial and governmental interest in lunar and asteroid resource extraction, as well as continuing interest in deep space scientific missions, means an increase in demand for deep space communications systems. Jet Propulsion Laboratory’s MarCo demonstrated the viability and usefulness of cubesats as relay stations for deep space communications. Given their relatively low cost of construction and launch, cubesats can decrease the cost of building deep space communication systems. This has the potential to make it feasible for a group without a large budget, such as a university cubesat team, to build such a system. However, while minimizing the cost of the satellite is important, it is only one part of the communications link. The ground station is the other. The cost of accessing the Deep Space Network puts it out of reach for most operations that are not NASA programs, including our student-designed and built University of Colorado Earth Escape Explorer (CU-E3) 6U cubesat. This means that a project such as ours has to look at options provided by commercial ground station services. As a competitor in the NASA Cubequest Challenge Deep Space Derby, the CU-E3 team’s goal is to demonstrate it is possible to build a deep space communications system that is small, powerful, and (relatively) low cost. This means not just the hardware on the satellite but also the ground station. On the satellite side, we have developed custom hardware to interface with an AstroDev Li-2 radio for C-band uplink. For downlink, we will be using an X-band radio developed for low earth applications at the University of Colorado Boulder under the NASA Small Satellite Technology Development program. For ground station services, we will be partnering with a commercial provider, ATLAS. This paper describes the architecture of the CU-E3 communications system, the challenges of developing a communications system small enough to fit in a 6U cubesat yet powerful enough for deep space, and the process we used to research and partner with a commercial ground station service to help us fulfill our mission

    Space station

    Get PDF
    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space

    Cost benefit analysis of space communications technology: Volume 1: Executive summary

    Get PDF
    The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA

    Space Telecommunications Radio System (STRS) Architecture, Tutorial Part 1 - Overview

    Get PDF
    Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard forsoftware-defined radio. The STRS architecture has been demonstrated in the Space Communications and Navigation(SCaN) Testbed on the International Space Station as well as associated ground station radios. The STRS ArchitectureTutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA GlennResearch Center (GRC), describes some of the main elements for STRS compliance, and addresses some frequentlyasked questions.. The STRS architecture should be used as a base for many of NASA s future telecommunicationstechnologies. The presentation will provide a basic understanding of STRS

    Camera Expert System for Space Station Communications and Tracking System Management

    Get PDF
    This paper descrihcs Harris research into the use of Expert System technology for the management of the Communications and Tracking System for the Space Station. Harris Corporation hac; developed the CAMERA (Control and Monitor Equipment Resource Allocation) Expert System to minimize crew workload in managing the communications of the Space Station. The system ha~ heen implemented (under NASA contract) for use on a testbed at JSC. The system utilizes a state of the art man-machine interface to allow high level end-toend service requests

    Research in space commercialization, technology transfer and communications, vol. 2

    Get PDF
    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined
    • …
    corecore