35 research outputs found

    Revocable Key-Aggregate Cryptosystem for Data Sharing in Cloud

    Get PDF
    With the rapid development of network and storage technology, cloud storage has become a new service mode, while data sharing and user revocation are important functions in the cloud storage. Therefore, according to the characteristics of cloud storage, a revocable key-aggregate encryption scheme is put forward based on subset-cover framework. The proposed scheme not only has the key-aggregate characteristics, which greatly simplifies the user’s key management, but also can revoke user access permissions, realizing the flexible and effective access control. When user revocation occurs, it allows cloud server to update the ciphertext so that revoked users can not have access to the new ciphertext, while nonrevoked users do not need to update their private keys. In addition, a verification mechanism is provided in the proposed scheme, which can verify the updated ciphertext and ensure that the user revocation is performed correctly. Compared with the existing schemes, this scheme can not only reduce the cost of key management and storage, but also realize user revocation and achieve user’s access control efficiently. Finally, the proposed scheme can be proved to be selective chosen-plaintext security in the standard model

    A Generic Construction of Revocable Identity-Based Encryption

    Get PDF
    Revocable identity-based encryption (RIBE) is an extension of IBE that supports a key revocation mechanism, which is important when deployed an IBE system in practice. Boneh and Franklin presented the first generic construction of RIBE, however, their scheme is not scalable where the size of key update is linear in the number of users in the system. Then, Boldyreva, Goyal and Kumar presented the first scalable RIBE where the size of key update is logarithmic in the number of users and linear in the number of revoked users. In this paper, we present a generic construction of scalable RIBE from any IBE in a black-box way. Our construction has some merits both in theory and in practice. We obtain the first RIBE scheme based on quadratic residuosity problem and the first adaptively secure RIBE scheme based on lattices if we instantiate the underlying IBE with IBE schemes from quadratic residuosity assumption and adaptively secure IBE from lattices, respectively. In addition, the size of public parameters and secret keys are the same as that of the underlying IBE schemes. In server-aided model, the overheads of communication and computation for receivers are the same as those of underlying IBE schemes. Furthermore, the storage overhead for key update in our scheme is constant (in the number of users) while it was linear in the number of users in previous works

    Generic Constructions of RIBE via Subset Difference Method

    Get PDF
    Revocable identity-based encryption (RIBE) is an extension of IBE which can support a key revocation mechanism, and it is important when deploying an IBE system in practice. Boneh and Franklin (Crypto\u2701) presented the first generic construction of RIBE, however, their scheme is not scalable where the size of key updates is linear in the number of users in the system. The first generic construction of RIBE is presented by Ma and Lin with complete subtree (CS) method by combining IBE and hierarchical IBE (HIBE) schemes. Recently, Lee proposed a new generic construction using the subset difference (SD) method by combining IBE,identity-based revocation (IBR), and two-level HIBE schemes. In this paper, we present a new primitive called Identity-Based Encryption with Ciphertext Delegation (CIBE) and propose a generic construction of RIBE scheme via subset difference method using CIBE and HIBE as building blocks. CIBE is a special type of Wildcarded IBE (WIBE) and Identity-Based Broadcast Encryption (IBBE). Furthermore, we show that CIBE can be constructed from IBE in a black-box way. Instantiating the underlying building blocks with different concrete schemes, we can obtain a RIBE scheme with constant-size public parameter, ciphertext, private key and O(r)O(r) key updates in the selective-ID model. Additionally, our generic RIBE scheme can be easily converted to a sever-aided RIBE scheme which is more suitable for lightweight devices

    Generic Construction of Server-Aided Revocable Hierarchical Identity-Based Encryption with Decryption Key Exposure Resistance

    Get PDF
    In this paper, we extend the notion of server-aided revocable identity-based encryption (SR-IBE) to the hierarchical IBE (HIBE) setting and propose a generic construction of server-aided revocable hierarchical IBE (SR-HIBE) schemes with decryption key exposure resistance (DKER) from any (weak) L-level revocable HIBE scheme without DKER and (L+1)-level HIBE scheme. In order to realize the server-aided revocation mechanism, we use the “double encryption” technique, and this makes our construction has short ciphertext size. Furthermore, when the maximum hierarchical depth is one, we obtain a generic construction of SR-IBE schemes with DKER from any IBE scheme and two-level HIBE scheme

    Quantum Lightning Never Strikes the Same State Twice

    Get PDF
    Public key quantum money can be seen as a version of the quantum no-cloning theorem that holds even when the quantum states can be verified by the adversary. In this work, investigate quantum lightning, a formalization of "collision-free quantum money" defined by Lutomirski et al. [ICS'10], where no-cloning holds even when the adversary herself generates the quantum state to be cloned. We then study quantum money and quantum lightning, showing the following results: - We demonstrate the usefulness of quantum lightning by showing several potential applications, such as generating random strings with a proof of entropy, to completely decentralized cryptocurrency without a block-chain, where transactions is instant and local. - We give win-win results for quantum money/lightning, showing that either signatures/hash functions/commitment schemes meet very strong recently proposed notions of security, or they yield quantum money or lightning. - We construct quantum lightning under the assumed multi-collision resistance of random degree-2 systems of polynomials. - We show that instantiating the quantum money scheme of Aaronson and Christiano [STOC'12] with indistinguishability obfuscation that is secure against quantum computers yields a secure quantum money schem

    Quantum Tokens for Digital Signatures

    Get PDF
    The fisherman caught a quantum fish. "Fisherman, please let me go", begged the fish, "and I will grant you three wishes". The fisherman agreed. The fish gave the fisherman a quantum computer, three quantum signing tokens and his classical public key. The fish explained: "to sign your three wishes, use the tokenized signature scheme on this quantum computer, then show your valid signature to the king, who owes me a favor". The fisherman used one of the signing tokens to sign the document "give me a castle!" and rushed to the palace. The king executed the classical verification algorithm using the fish's public key, and since it was valid, the king complied. The fisherman's wife wanted to sign ten wishes using their two remaining signing tokens. The fisherman did not want to cheat, and secretly sailed to meet the fish. "Fish, my wife wants to sign ten more wishes". But the fish was not worried: "I have learned quantum cryptography following the previous story (The Fisherman and His Wife by the brothers Grimm). The quantum tokens are consumed during the signing. Your polynomial wife cannot even sign four wishes using the three signing tokens I gave you". "How does it work?" wondered the fisherman. "Have you heard of quantum money? These are quantum states which can be easily verified but are hard to copy. This tokenized quantum signature scheme extends Aaronson and Christiano's quantum money scheme, which is why the signing tokens cannot be copied". "Does your scheme have additional fancy properties?" the fisherman asked. "Yes, the scheme has other security guarantees: revocability, testability and everlasting security. Furthermore, if you're at sea and your quantum phone has only classical reception, you can use this scheme to transfer the value of the quantum money to shore", said the fish, and swam away.Comment: Added illustration of the abstract to the ancillary file

    Data auditing and security in cloud computing: issues, challenges and future directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discusse

    Data Auditing and Security in Cloud Computing: Issues, Challenges and Future Directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discussed
    corecore